【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過(guò)程中,△CMN的周長(zhǎng)如何變化?說(shuō)明理由.
【答案】(1)存在△MCN與△ODM相似,證明見(jiàn)矩形;
(2)R=;
(3)△CMN的周長(zhǎng)是一個(gè)定值,理由見(jiàn)解析.
【解析】試題分析:(1)根據(jù)切線的性質(zhì)得出∠OMN=90,從而證得∠OMD=∠MNC;則△ODM∽△MCN;
(2)由DM=x,設(shè)OA=OM=R;則得出OD,由勾股定理得R與x的關(guān)系;
(3)可分為兩種解法得出答案.由△ODM∽△MCN,得,用含x的式子表示出CN,MN,從而得出△CMN的周長(zhǎng)是一個(gè)定值.
試題解析:(1)存在△MCN與△ODM相似,證明如下:
∵M(jìn)N切⊙O于點(diǎn)M,∴∠OMN=90°,∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°,∴∠OMD=∠MNC,又∵∠D=∠C=90°,∴△ODM∽△MCN.
(2)在Rt△ODM中,DM=x,設(shè)OA=OM=R,∴OD=AD﹣OA=8﹣R,由勾股定理得:(8﹣R)2+x2=R2,
∴64﹣16R+R2+x2=R2,∴R=.
(3)∵CM=CD﹣DM=8﹣x,OD=8﹣R=8﹣,且有△ODM∽△MCN,∴,∴代入得到:CN=.
同理,∴代入得到:MN=,∴△CMN的周長(zhǎng)=CM+CN+MN=(8﹣x)++=(8﹣x)+(x+8)=16,
在點(diǎn)O的運(yùn)動(dòng)過(guò)程中,△CMN的周長(zhǎng)始終為16,是一個(gè)定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形的一邊長(zhǎng)是8cm,另一邊長(zhǎng)是3cm,則它的周長(zhǎng)是______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線y1=2x與雙曲線y2= 的圖象如圖所示,小明說(shuō):“滿足y1<y2的x的取值范圍是x<﹣1.”你同意他的觀點(diǎn)嗎? 答: . 理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,奧運(yùn)福娃在5×5的方格(每小格邊長(zhǎng)為1 m)上沿著網(wǎng)格線運(yùn)動(dòng).貝貝從A處出發(fā)去尋找B、C、D處的其他福娃,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A·B(+1,+4),從B到A記為:B·A(-1,-4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向,那么圖中:
(1)A·C(__________,__________),B·C(__________,__________),C·__________(-3,-4);
(2)若貝貝從A處去尋找妮妮的行走路線依次為(+2,+2),(+2,-1),(-2,+3),(-1,-2),請(qǐng)?jiān)趫D中標(biāo)出妮妮的位置點(diǎn)E.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】年,德國(guó)數(shù)學(xué)家格奧爾格康托爾引入位于一條線段上的一些點(diǎn)的集合,他的做法如下:
取一條長(zhǎng)度為的線段,將它三等分,去掉中間一段,余下兩條線段,達(dá)到第階段;將剩下的兩條線段再分別三等分.各去掉中間一段,余下四條線段,達(dá)到第階段;再將剩下的四條線段,分別三等分,各去掉中間一段,余下八條線段,達(dá)到第線段; ;這樣的操作一直繼續(xù)下去,在不斷分割舍棄的過(guò)程中,所形成的線段數(shù)目越來(lái)越多,把這種分形,稱做康托爾點(diǎn)集.下圖是康托爾點(diǎn)集的最初幾個(gè)階段,當(dāng)達(dá)到個(gè)階段時(shí)(為正整數(shù)),的線段的長(zhǎng)度之和為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°,求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若m為大于0的整數(shù),則(m+1)2-(m-1)2一定是( ).
A.3的倍數(shù)B.4的倍數(shù)C.6的倍數(shù)D.16的倍數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年6月17日北京國(guó)際自行車(chē)大會(huì)召開(kāi),來(lái)自世界各地的4000多名騎游愛(ài)好者齊聚夏都延慶.各種自行車(chē)賽事也帶動(dòng)了延慶的騎游產(chǎn)業(yè).據(jù)調(diào)查,延慶區(qū)某騎游公司每月的租賃自行車(chē)數(shù)的增長(zhǎng)率相同,今年四月份的騎游人數(shù)約為9000人,六月份的騎游人數(shù)約為16000人,求該騎游公司租賃自行車(chē)數(shù)的月平均增長(zhǎng)率(精確到0.01).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com