【題目】如圖,在數(shù)軸上原點為O,點P表示的數(shù)為30,點Q表示的數(shù)為120,甲、乙兩只小蟲分別從O,P兩點出發(fā),沿直線勻速爬向點Q,最終達(dá)到點Q.已知甲每分鐘爬行60個單位長度,乙每分鐘爬行30個單位長度,則在此過程中,甲、乙兩只小蟲相距10個單位長度時的爬行時間為_________分鐘.

【答案】

【解析】

分三種情況,甲追上乙前、甲追上乙后和乙距Q10個單位,分別列式求解即可.

設(shè)爬行時間為x分鐘,

分三種情況:①甲追上乙前:

依題意可得30+30x-60x=10

解得x=

②甲追上乙后:

依題意可得60x –(30+30x) =10

解得x=

當(dāng)甲到達(dá)Q點時,t=,

當(dāng)乙到達(dá)Q點時,t=,

∴當(dāng)甲到達(dá)Q點時乙還沒有到Q點,

∴當(dāng)甲到達(dá)Q點,乙距Q10個單位時

依題意得30+30x=120-10

解得x=

綜上:甲、乙兩只小蟲相距10個單位長度時的爬行時間為分鐘.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讀題畫圖計算并作答

畫線段AB=3 cm,在線段AB上取一點K,使AK=BK,在線段AB的延長線上取一點C,使AC=3BC,在線段BA的延長線取一點D,使AD=AB.

(1)求線段BC、DC的長?

(2)K是哪些線段的中點?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲布袋中有三個紅球,分別標(biāo)有數(shù)字1,2,3;乙布袋中有三個白球,分別標(biāo)有數(shù)字2,3,4.這些球除顏色和數(shù)字外完全相同.小亮從甲袋中隨機摸出一個紅球,小剛從乙袋中隨機摸出一個白球.
(1)用畫樹狀圖(樹形圖)或列表的方法,求摸出的兩個球上的數(shù)字之和為6的概率;
(2)小亮和小剛做游戲,規(guī)則是:若摸出的兩個球上的數(shù)字之和為奇數(shù),小亮勝;否則,小剛勝.你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)化簡求值:,其中x=﹣

2)小王購買了一套經(jīng)濟適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問題:

用含x、y的代數(shù)式表示廚房的面積是_____m2;臥室的面積是______m2

寫出用含x、y的代數(shù)式表示這套房的總面積是多少平方米?

當(dāng)x=3,y=2時,求這套房的總面積是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點A、B分別在x、y軸上,點B的坐標(biāo)為(0,1),∠BAO=30°.

(1)求AB的長度;

(2)以AB為一邊作等邊ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;

(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】飛機著陸后滑行的距離S(單位:m)與滑行的時間t(單位:s)的函數(shù)關(guān)系式是S=80t﹣2t2 , 飛機著陸后滑行的最遠(yuǎn)距離是m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“低碳生活、綠色出行”理念的普及,新能源汽車在逐漸成為人們喜愛的交通工具,某汽車銷售公司計劃購進(jìn)一批新能源汽車嘗試進(jìn)行銷售,據(jù)了解,2A型汽車,3B型汽車的進(jìn)價共計80萬元;3A型汽車,2B型汽車的進(jìn)價共計95萬元.

1)問A、B兩種型號的汽車每輛進(jìn)價分別為多少萬元?

2)若該公司計劃用200萬元購進(jìn)以上兩種型號的新能源汽車(兩種型號的汽車均購買)請你幫助該公司設(shè)計購買方案;

3)若該汽車銷售公司銷售1A型汽車可獲利800元,銷售1B型汽車可獲利500元;在②的購買方案中,假如這些新能源汽車全部售出,哪種方案獲利最大?最大利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCD的頂點的坐標(biāo)分別為A(﹣6,9),B(0,9),C(3,0),D(﹣3,0),拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)過A、B兩點,頂點為M.

(1)若拋物線過點C,求拋物線的解析式;
(2)若拋物線的頂點M落在△ACD的內(nèi)部(包括邊界),求a的取值范圍;
(3)若a<0,連結(jié)CM交線段AB于點Q(Q不與點B重合),連接DM交線段AB于點P,設(shè)S1=SADP+SCBQ , S2=SMPQ , 試判斷S1與S2的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:
(1)x2﹣4x﹣4=0;
(2)x(x﹣2)=15.

查看答案和解析>>

同步練習(xí)冊答案