【題目】如圖,在△ABC中,∠C=90°,MAB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達(dá)終點,連接MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是( 。

A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減少

【答案】C

【解析】連接CM,根據(jù)點MAB的中點可得ACMBCM的面積相等,又PQ兩點同時出發(fā),并同時到達(dá)終點,所以點P到達(dá)AC的中點時,點Q到達(dá)BC的中點,然后把開始時、結(jié)束時、與中點時的MPQ的面積與ABC的面積相比即可進行判斷.

解:如圖所示,連接CM,

MAB的中點,

SACM=SBCM=SABC,

開始時,SMPQ=SACM=SABC,

P到達(dá)AC的中點時,Q到達(dá)BC的中點時,SMPQ=SABC

結(jié)束時, SMPQ=SACM=SABC,

所以,MPQ的面積大小變化情況是:先減小后增大.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC在直角坐標(biāo)系中,

1)若把△ABC向右平移2個單位,再向下平移3個單位得到△A′B′C′,寫出 A′B′、C′的坐標(biāo),并在圖中畫出平移后圖形.

2)如果在第二象限內(nèi)有一點Pm,3),四邊形ACOP的面積為 (用含m的式子表示)

3)在(2)的條件下,是否存在點P,使四邊形ACOP的面積與△ABC的面積相等?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的布袋中裝有1個紅球,2個白球,它們除顏色外其余完全相同.

1)從袋中任意摸出兩個球,試用樹狀圖或表格列出所有等可能的結(jié)果,并求摸出的球恰好是兩個白球的概率;

2)若在布袋中再添加a個白球,充分?jǐn)噭颍瑥闹忻鲆粋球,使摸到紅球的概率為,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:如圖,點A、B在數(shù)軸上分別表示有理數(shù)a、b,則A、B兩點之間的距離可以表示為|a﹣b|.

根據(jù)閱讀材料與你的理解回答下列問題:

(1)數(shù)軸上表示3與﹣2的兩點之間的距離是   .

(2)數(shù)軸上有理數(shù)x與有理數(shù)7所對應(yīng)兩點之間的距離用絕對值符號可以表示為  .

(3)代數(shù)式|x+8|可以表示數(shù)軸上有理數(shù)x與有理數(shù)   所對應(yīng)的兩點之間的距離;若|x+8|=5,則x=      .

(4)求代數(shù)式|x+1008|+|x+504|+|x﹣1007|的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某燈具廠計劃一天生產(chǎn)300盞景觀燈,但由于各種原因,實際每天生產(chǎn)景觀燈盞數(shù)與計劃每天生產(chǎn)景觀燈盞數(shù)相比有出入.下表是某周的生產(chǎn)情況(增產(chǎn)記為正,減產(chǎn)記為負(fù)):

⑴求該廠這周實際生產(chǎn)景觀燈的盞數(shù);

⑵求該廠這周產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)景觀燈的盞數(shù);

⑶該廠實出售該中燈,每盞可獲得40元的利潤,若把本周生產(chǎn)的所有燈全部銷售掉,可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的布袋里裝有4個標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機取出一個小球,記下數(shù)字為x,小紅在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y

(1)計算由x、y確定的點(x,y)在函數(shù)y=﹣x+5的圖象上的概率.

(2)小明和小紅約定做一個游戲,其規(guī)則為:若x、y滿足xy6,則小明勝;若x、y滿足xy6,則小紅勝,這個游戲公平嗎?請說明理由;若不公平,請寫出公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合探究:如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=﹣+bx+8與x軸交于點A(﹣6,0)和點B(點A在點B左側(cè)),與y軸交于點C,點P為線段AO上的一個動點,過點P作x軸的垂線l與拋物線交于點E,連接AE、EC.

(1)求拋物線的表達(dá)式及點C的坐標(biāo);

(2)連接AC交直線l于點D,則在點P運動過程中,當(dāng)點D為EP中點時,SADP:SCDE=   ;

(3)如圖2,當(dāng)ECx軸時,點P停止運動,此時,在拋物線上是否存在點G,使得以點A、E、G為頂點的三角形是直角三角形?若存在,請求出點G的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今有善行者行一百步,不善行者行六十步(出自《九章算術(shù)》)意思是:同樣時間段內(nèi),走路快的人能走100步,走路慢的人只能走60步,假定兩者步長相等,據(jù)此回答以下問題:

1)今不善行者先行一百步,善行者追之,不善行者再行六百步,問孰至于前,兩者幾何步隔之?即:走路慢的人先走100步,走路快的人開始追趕,當(dāng)走路慢的人再走600步時,請問誰在前面,兩人相隔多少步?

2)今不善行者先行兩百步,善行者追之,問幾何步及之?即:走路慢的人先走200步,請問走路快的人走多少步才能追上走路慢的人?

查看答案和解析>>

同步練習(xí)冊答案