【題目】如圖,在△ABC中,∠B90°,AB6,BC8.點P從點A開始沿邊AB向點B1cm/s的速度移動,與此同時,點Q從點B開始沿邊BC向點C2cm/s的速度移動.設(shè)P、Q分別從AB同時出發(fā),運(yùn)動時間為t,當(dāng)其中一點先到達(dá)終點時,另一點也停止運(yùn)動.解答下列問題:

1)經(jīng)過幾秒,△PBQ的面積等于8cm2?

2)是否存在這樣的時刻t,使線段PQ恰好平分△ABC的面積?若存在,求出運(yùn)動時間t;若不存在,請說明理由.

【答案】12;(2)線段PQ不能平分△ABC的面積.

【解析】

試題(1)設(shè)出運(yùn)動所求的時間,可將BPBQ的長表示出來,代入三角形面積公式,列出等式,可將時間求出;

2)將△PBQ的面積表示出來,根據(jù)△=b2-4ac來判斷.

試題解析:解:(1)設(shè)經(jīng)過x秒,△PBQ的面積等于8cm2則:

BP=6-x,BQ=2x,

所以SPBQ=×6-x×2x=8,即x2-6x+8=0,

可得:x=24(舍去),

即經(jīng)過2秒,△PBQ的面積等于8cm2

2)設(shè)經(jīng)過y秒,線段PQ恰好平分△ABC的面積,△PBQ的面積等于12cm2,

SPBQ=×6-y×2y=12

y2-6y+12=0,

因為△=b2-4ac=36-4×12=-120,所以△PBQ的面積不會等于12cm2,則線段PQ不能平分△ABC的面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程有實數(shù)根.

(1)m的值;

(2)先作的圖象關(guān)于x軸的對稱圖形,然后將所作圖形向左平移3個單位長度,再向上平移2個單位長度,寫出變化后圖象的解析式;

(3)在(2)的條件下,當(dāng)直線y=2x+n(n≥m)與變化后的圖象有公共點時,求的最大值和最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.

(1)求此拋物線的解析式;

(2)直接寫出點C和點D的坐標(biāo);

(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE,求P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=6cmBC=12cm,點P從點A出發(fā),沿AB邊向點B1cm/秒的速度移動,同時,點Q從點B出發(fā)沿BC邊向點C2cm/秒的速度移動。如果P、Q兩點在分別到達(dá)B.C兩點后就停止移動,回答下列問題:

(1)運(yùn)動開始后第幾秒時, PBQ的面積等于8?

(2)當(dāng)t=時,試判斷DPQ的形狀。

(3)計算四邊形DPBQ的面積,并探索一個與計算結(jié)果有關(guān)的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生的文體生活,育紅學(xué)校準(zhǔn)備成立聲樂、演講、舞蹈、足球、籃球五個社團(tuán),要求每個學(xué)生都參加一個社團(tuán)且每人只能參加一個社團(tuán).為了了解即將參加每個社團(tuán)的大致人數(shù),學(xué)校對部分學(xué)生進(jìn)行了抽樣調(diào)查在整理調(diào)查數(shù)據(jù)的過程中,繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

(1)被抽查的學(xué)生一共有多少人?

(2)將條形統(tǒng)計圖補(bǔ)充完整.

(3)若全校有學(xué)生1500人,請你估計全校有意參加聲樂社團(tuán)的學(xué)生人數(shù).

(4)從被抽查的學(xué)生中隨意選出1人,該學(xué)生恰好選擇參加演講社團(tuán)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.

(1)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀并說明理由;

(2)已知a:b:c=3:4:5,求該一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場一種商品的進(jìn)價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.

(1)若該商品連續(xù)兩次下調(diào)相同的百分率后售價降至每件32.4元,求兩次下降的百分率;

(2)經(jīng)調(diào)查,若每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若△ABC中,其中一個內(nèi)角是另一個內(nèi)角的一半,則稱△ABC為“半角三角形”.

1)若RtABC為半角三角形,∠A=90°,則其余兩個角的度數(shù)為.

2)如圖,以△ABC的邊AB為直徑畫圓,與邊AC交于M,與邊BC交于N,已知CN=AC

①求證:∠C=60°.

②若△ABC是半角三角形,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案