【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點E,PCD的周長為12,∠APB=60°

求:(1PA的長;

2)∠COD的度數(shù).

【答案】.解:(1)由切線長定理可得PCD的周長=PA+PB,PA=PB,

PA=PB=6 ………………………………………(4)

(2)連接OAOB、OE

利用切線長定理可證COD=AOB=180°-∠P=60° ………… (8)

【解析】

(1)、可通過切線長定理將相等的線段進行轉(zhuǎn)換,得出三角形PDE的周長等于PA+PB的結(jié)論,即可求出PA的長;(2)、根據(jù)三角形的內(nèi)角和求出∠ADC和∠BEC的度數(shù)和,然后根據(jù)切線長定理,得出∠EDO和∠DEO的度數(shù)和,再根據(jù)三角形的內(nèi)角和求出∠DOE的度數(shù).

(1)∵CA,CE都是⊙O的切線,∴CA=CE, 同理:DE=DB,PA=PB,

∴△PCD的周長=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的長為6;

(2)∵∠P=60°,∴∠PCE+∠PDE=120°, ∴∠ACD+∠CDB=360°-120°=240°,

∵CA,CE是⊙O的切線, ∴∠OCE=∠OCA=∠ACD; 同理:∠ODE=∠CDB,

∴∠OCE+∠ODE= (∠ACD+∠CDB)=120°, ∴∠COD=180-120°=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+ca0)的圖象如圖所示,則下列結(jié)論:(14a+2b+c0;(2)方程ax2+bx+c0兩根都大于零;(3yx的增大而增大;(4)一次函數(shù)yx+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對應(yīng)邊BCCE、EF在同一條直線上,連接BG,分別交AC、DC、DE于點PQ、K,其中SPQC=3,則圖中三個陰影部分的面積和為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點Cx軸下方,且使OCA∽△OBC.

(1)求線段OC的長度;

(2)設(shè)直線BCy軸交于點M,點CBM的中點時,求直線BM和拋物線的解析式;

(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)500名員工參加安全生產(chǎn)知識測試,成績記為A,B,C,DE5個等級,為了解本次測試的成績(等級)情況,現(xiàn)從中隨機抽取部分員工的成績(等級),統(tǒng)計整理并制作了如下的統(tǒng)計圖:

1)求這次抽樣調(diào)查的樣本容量,并補全圖;

2)如果測試成績(等級)為A,B,C級的定為優(yōu)秀,請估計該企業(yè)參加本次安全生產(chǎn)知識測試成績(等級)達到優(yōu)秀的員工的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點AB3,0),與y軸交于點C0,3).

1)求拋物線的解析式;

2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

3E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)報道,國際剪刀石頭布協(xié)會提議將剪刀石頭布作為奧運會比賽項目.某校學(xué)生會想知道學(xué)生對這個提議的了解程度,隨機抽取部分學(xué)生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學(xué)生共有________名;

2)請補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中基本了解部分所對應(yīng)扇形的圓心角為________度;

4)若該校共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中對將剪刀石頭布作為奧運會比賽項目的提議達到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD對角線交點O作直線m,分別交直線AB于點E,交直線CD于點F,若AB=4,AE=6,則DF的長是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x22x3經(jīng)過x軸上的A,B兩點,與y軸交于點C,線段BC與拋物線的對稱軸相交于點D,點Ey軸上的一個動點.

1)求直線BC的函數(shù)解析式,并求出點D的坐標;

2)設(shè)點E的縱坐標為為m,在點E的運動過程中,當BDE中為鈍角三角形時,求m的取值范圍;

3)如圖2,連結(jié)DE,將射線DE繞點D順時針方向旋轉(zhuǎn)90°,與拋物線交點為G,連結(jié)EG,DG得到RtGED.在點E的運動過程中,是否存在這樣的RtGED,使得兩直角邊之比為21?如果存在,求出此時點G的坐標;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案