【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點E,△PCD的周長為12,∠APB=60°.
求:(1)PA的長;
(2)∠COD的度數(shù).
【答案】.解:(1)由切線長定理可得△PCD的周長=PA+PB,PA=PB,
∴PA=PB=6 ………………………………………(4分)
(2)連接OA、OB、OE
利用切線長定理可證∠COD=∠AOB=(180°-∠P)=60° ………… (8分)
【解析】
(1)、可通過切線長定理將相等的線段進行轉(zhuǎn)換,得出三角形PDE的周長等于PA+PB的結(jié)論,即可求出PA的長;(2)、根據(jù)三角形的內(nèi)角和求出∠ADC和∠BEC的度數(shù)和,然后根據(jù)切線長定理,得出∠EDO和∠DEO的度數(shù)和,再根據(jù)三角形的內(nèi)角和求出∠DOE的度數(shù).
(1)∵CA,CE都是⊙O的切線,∴CA=CE, 同理:DE=DB,PA=PB,
∴△PCD的周長=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的長為6;
(2)∵∠P=60°,∴∠PCE+∠PDE=120°, ∴∠ACD+∠CDB=360°-120°=240°,
∵CA,CE是⊙O的切線, ∴∠OCE=∠OCA=∠ACD; 同理:∠ODE=∠CDB,
∴∠OCE+∠ODE= (∠ACD+∠CDB)=120°, ∴∠COD=180-120°=60°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:(1)4a+2b+c<0;(2)方程ax2+bx+c=0兩根都大于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對應(yīng)邊BC.CE、EF在同一條直線上,連接BG,分別交AC、DC、DE于點P、Q、K,其中S△PQC=3,則圖中三個陰影部分的面積和為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)500名員工參加安全生產(chǎn)知識測試,成績記為A,B,C,D,E共5個等級,為了解本次測試的成績(等級)情況,現(xiàn)從中隨機抽取部分員工的成績(等級),統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次抽樣調(diào)查的樣本容量,并補全圖①;
(2)如果測試成績(等級)為A,B,C級的定為優(yōu)秀,請估計該企業(yè)參加本次安全生產(chǎn)知識測試成績(等級)達到優(yōu)秀的員工的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,“國際剪刀石頭布協(xié)會”提議將“剪刀石頭布”作為奧運會比賽項目.某校學(xué)生會想知道學(xué)生對這個提議的了解程度,隨機抽取部分學(xué)生進行了一次問卷調(diào)查,并根據(jù)收集到的信息進行了統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有________名;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為________度;
(4)若該校共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該校學(xué)生中對將“剪刀石頭布”作為奧運會比賽項目的提議達到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過□ABCD對角線交點O作直線m,分別交直線AB于點E,交直線CD于點F,若AB=4,AE=6,則DF的長是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2x﹣3經(jīng)過x軸上的A,B兩點,與y軸交于點C,線段BC與拋物線的對稱軸相交于點D,點E為y軸上的一個動點.
(1)求直線BC的函數(shù)解析式,并求出點D的坐標;
(2)設(shè)點E的縱坐標為為m,在點E的運動過程中,當△BDE中為鈍角三角形時,求m的取值范圍;
(3)如圖2,連結(jié)DE,將射線DE繞點D順時針方向旋轉(zhuǎn)90°,與拋物線交點為G,連結(jié)EG,DG得到Rt△GED.在點E的運動過程中,是否存在這樣的Rt△GED,使得兩直角邊之比為2:1?如果存在,求出此時點G的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com