【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(—1,—5),且與正比例函數(shù)的圖象相交于點B(2,a).
(1)求a的值;
(2)求一次函數(shù)y=kx+b的表達(dá)式;
(3)在同一坐標(biāo)系中,畫出這兩個函數(shù)的圖象,并求這兩條直線與y軸圍成的三角形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】亞洲文明對話大會召開期間,大批的大學(xué)生志愿者參與服務(wù)工作.某大學(xué)計劃組織本校全體志愿者統(tǒng)一乘車去會場,若單獨(dú)調(diào)配36座新能源客車若干輛,則有2人沒有座位;若只調(diào)配22座新能源客車,則用車數(shù)量將增加4輛,并空出2個座位.
(1)計劃調(diào)配36座新能源客車多少輛?該大學(xué)共有多少名志愿者?
(2)若同時調(diào)配36座和22座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店進(jìn)行門店升級需要裝修,裝修期間暫停營業(yè),若請甲乙兩個裝修組同時施工,8天可以完成,需付費(fèi)用共3520元;若先請甲組單獨(dú)做6天,再請乙組單獨(dú)做12天可以完成,需付費(fèi)用3480元,問:
甲、乙兩組工作一天,商店各應(yīng)付多少錢?
已知甲組單獨(dú)完成需12天,乙組單獨(dú)完成需24天,單獨(dú)請哪個組,商店所需費(fèi)用最少?
裝修完畢第二天即可正常營業(yè),且每天仍可盈利200元即裝修前后每天盈利不變,你認(rèn)為商店應(yīng)如何安排施工更有利?說說你的理由可用問的條件及結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為A(0,m)、B(n,0),且|m﹣n﹣3|+=0,點P從A出發(fā),以每秒1個單位的速度沿射線AO勻速運(yùn)動,設(shè)點P的運(yùn)動時間為t秒.
(1)求OA、OB的長;
(2)連接PB,設(shè)△POB的面積為S,用t的式子表示S;
(3)過點P作直線AB的垂線,垂足為D,直線PD與x軸交于點E,在點P運(yùn)動的過程中,是否存在這樣的點P,使△EOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與坐標(biāo)軸相交于、、三點,是線段上一動點(端點除外),過作,交于點,連接.
直接寫出、、的坐標(biāo);
求拋物線的對稱軸和頂點坐標(biāo);
求面積的最大值,并判斷當(dāng)的面積取最大值時,以、為鄰邊的平行四邊形是否為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰中,,,點,點分別是軸,軸上兩個動點,直角邊交軸于點,斜邊交軸于點.
(1)如圖①,當(dāng)?shù)妊?/span>運(yùn)動到使點恰為中點時,連接,求證:;
(2)如圖②,當(dāng)?shù)妊?/span>運(yùn)動到使時,點的橫坐標(biāo)為,.在軸上是否存在點,使為等腰三角形?若存在,請直接寫出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是數(shù)學(xué)史上非常重要的一個定理.早在多年以前,人們就開始對它進(jìn)行研究,至今已有幾百種證明方法.在歐幾里得編的《原本》中證明勾股定理的方法如下,請同學(xué)們仔細(xì)閱讀并解答相關(guān)問題:如圖,分別以的三邊為邊長,向外作正方形、、.
(1)連接、,求證:
(2)過點作的垂線,交于點,交于點.
①試說明四邊形與正方形的面積相等;
②請直接寫出圖中與正方形的面積相等的四邊形.
(3)由第(2)題可得:正方形的面積正方形的面積_______________的面積,即在中,__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一根長度為的細(xì)繩圍成一個等腰三角形.
(1)如果所圍等腰三角形的腰長是底邊長的2倍,則此時的底邊長度是多少?
(2)所圍成的等腰三角形的腰長不可能等于,請簡單說明原因.
(3)若所圍成的等腰三角形的腰長為,請求出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com