【題目】如圖,已知ADABC的高,且AB+BDAC+CD,求證:ABAC.

【答案】證明見(jiàn)解析.

【解析】

延長(zhǎng)DBE,使BE=AB;延長(zhǎng)DCF,使CF=AC;連接AE、AF;由AB+BD=CD+AC,得到DE=DF,又ADBC;推出△AEF是等腰三角形;得到∠E=F;于是得到∠ABC=2E;同理得∠ACB=2F;證得∠ABC=ACB,即可得到結(jié)論.

證明:延長(zhǎng)DBE,使BEAB;延長(zhǎng)DCF,使CFAC;連接AE、AF

∵AB+BDCD+AC,

∴DEDF,

AD⊥BC,

∴△AEF是等腰三角形;

∴∠E∠F;

∵ABBE,

∴∠ABC2∠E;

同理,得∠ACB2∠F;

∴∠ABC∠ACB,

∴ABAC,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有0、10、2030的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.

1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;

2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,BN,DN分別平分∠ABM,∠MDC,試問(wèn)∠M與∠N之間的數(shù)量關(guān)系如何?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,DAC邊中點(diǎn),過(guò)D點(diǎn)作DEDF,交ABE,交BCF,連接BD.

(1)求證:△CDF≌△BED

(2)AE=4,FC=3,求AB長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB8,射線BGAB,P為射線BG上一點(diǎn),連接AP,APCPAP=CP,連接AC,PD平分∠APC,C、D與點(diǎn)BAP兩側(cè),在線段DP取一點(diǎn)E,使∠EAP=∠BAP,連接CE與線段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).

(1)求證:AEP≌△CEP;

(2)判斷CFAB的位置關(guān)系,并說(shuō)明理由;

(3)求△AEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程.

(1)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根.

(2)設(shè)是方程的兩個(gè)根,記,S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線ymxn與反比例函數(shù)交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與x軸、y軸分別交于點(diǎn)C、點(diǎn)D,AEx軸于E,BFy軸于F

(1) 若mk,n=0,求AB兩點(diǎn)的坐標(biāo)(用m表示).

(2) 如圖1,若A(x1,y1)、B(x2,y2),寫(xiě)出y1y2n的大小關(guān)系,并證明.

(3) 如圖2,M、N分別為反比例函數(shù)圖象上的點(diǎn),AMBNx軸.若,且AM,BN之間的距離為5,則kb=_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)計(jì)算并觀察下列各式:

1個(gè):(ab)(a+b)______;

2個(gè):(ab)(a2+ab+b2)______;

3個(gè):(ab)(a3+a2b+ab2+b3)_______;

……

這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.

(2)猜想:若n為大于1的正整數(shù),則(ab)(an1+an2b+an3b2+……+a2bn3+abn2+bn1)________;

(3)利用(2)的猜想計(jì)算:2n1+2n2+2n3+……+23+22+1______

(4)拓廣與應(yīng)用:3n1+3n2+3n3+……+33+32+1_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

(1)(2x2y)3(3x2y)

(2)(36x3-24x2+2x)÷4x

(3)(2x+y+1)(2x-y-1)

(4)(-3ax)2(5a2-3ax3)

查看答案和解析>>

同步練習(xí)冊(cè)答案