【題目】如圖,已知AD是△ABC的高,且AB+BD=AC+CD,求證:AB=AC.
【答案】證明見(jiàn)解析.
【解析】
延長(zhǎng)DB至E,使BE=AB;延長(zhǎng)DC至F,使CF=AC;連接AE、AF;由AB+BD=CD+AC,得到DE=DF,又AD⊥BC;推出△AEF是等腰三角形;得到∠E=∠F;于是得到∠ABC=2∠E;同理得∠ACB=2∠F;證得∠ABC=∠ACB,即可得到結(jié)論.
證明:延長(zhǎng)DB至E,使BE=AB;延長(zhǎng)DC至F,使CF=AC;連接AE、AF.
∵AB+BD=CD+AC,
∴DE=DF,
又AD⊥BC,
∴△AEF是等腰三角形;
∴∠E=∠F;
∵AB=BE,
∴∠ABC=2∠E;
同理,得∠ACB=2∠F;
∴∠ABC=∠ACB,
∴AB=AC,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng):在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回),商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到_____元購(gòu)物券,至多可得到_______元購(gòu)物券;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,BN,DN分別平分∠ABM,∠MDC,試問(wèn)∠M與∠N之間的數(shù)量關(guān)系如何?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ABC=90°,D為AC邊中點(diǎn),過(guò)D點(diǎn)作DE⊥DF,交AB于E,交BC于F,連接BD.
(1)求證:△CDF≌△BED
(2)若AE=4,FC=3,求AB長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB=8,射線BG⊥AB,P為射線BG上一點(diǎn),連接AP,作AP⊥CP且AP=CP,連接AC,PD平分∠APC,且C、D與點(diǎn)B在AP兩側(cè),在線段DP取一點(diǎn)E,使∠EAP=∠BAP,連接CE與線段AB相交于點(diǎn)F(點(diǎn)F與點(diǎn)A、B不重合).
(1)求證:△AEP≌△CEP;
(2)判斷CF與AB的位置關(guān)系,并說(shuō)明理由;
(3)求△AEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程.
(1)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)是方程的兩個(gè)根,記,S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=mx+n與反比例函數(shù)交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左邊,與x軸、y軸分別交于點(diǎn)C、點(diǎn)D,AE⊥x軸于E,BF⊥y軸于F
(1) 若m=k,n=0,求A,B兩點(diǎn)的坐標(biāo)(用m表示).
(2) 如圖1,若A(x1,y1)、B(x2,y2),寫(xiě)出y1+y2與n的大小關(guān)系,并證明.
(3) 如圖2,M、N分別為反比例函數(shù)圖象上的點(diǎn),AM∥BN∥x軸.若,且AM,BN之間的距離為5,則k-b=_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算并觀察下列各式:
第1個(gè):(a﹣b)(a+b)=______;
第2個(gè):(a﹣b)(a2+ab+b2)=______;
第3個(gè):(a﹣b)(a3+a2b+ab2+b3)=_______;
……
這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.
(2)猜想:若n為大于1的正整數(shù),則(a﹣b)(an﹣1+an﹣2b+an﹣3b2+……+a2bn﹣3+abn﹣2+bn﹣1)=________;
(3)利用(2)的猜想計(jì)算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=______.
(4)拓廣與應(yīng)用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(2x2y)3(3x2y)
(2)(36x3-24x2+2x)÷4x
(3)(2x+y+1)(2x-y-1)
(4)(-3ax)2(5a2-3ax3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com