【題目】已知AM是△ABC的中線,點(diǎn)D在線段AM上[點(diǎn)D不與點(diǎn)A重合),過(guò)點(diǎn)D作DF∥AB交AC邊于點(diǎn)F,過(guò)點(diǎn)C作CE∥AM交DF的延長(zhǎng)線于點(diǎn)E,連接AE.
(1)如圖1,當(dāng)點(diǎn)D與點(diǎn)M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與點(diǎn)M重合時(shí),過(guò)點(diǎn)M作MG∥DE交EC于點(diǎn)G,連接BD、AG在不添加任何輔助線的情況下,請(qǐng)直接寫(xiě)出圖中所有的平行四邊形.
【答案】(1)見(jiàn)解析;(2)圖中所有的平行四邊形為平行四邊形ABMG,平行四邊形AMCG,平行四邊形DEGM,平行四邊形ABDE.
【解析】
(1)由平行線的性質(zhì)得出∠EDC=∠ABD,∠ECD=∠ADB,由中線性質(zhì)得出BD=DC,證明△ABD≌△EDC,得出AB=ED,即可得出結(jié)論;
(2)同(1)得:四邊形ABMG是平行四邊形,得出AG∥BC,AB=MG,由CE∥AM,得出四邊形AMCG是平行四邊形,由MG∥DE,CE∥AM,得出四邊形DEGM是平行四邊形,得出DE=MG,證出AB=DE,即可得出四邊形ABDE是平行四邊形.
解:(1)證明:∵DF∥AB,CE∥AM,
∴∠EDC=∠ABD,∠ECD=∠ADB,
∵AM是△ABC的中線,且D與M重合,
∴BD=DC,
在△ABD和△EDC中,
∴△ABD≌△EDC(ASA),
∴AB=ED,
∵AB∥ED,
∴四邊形ABDE是平行四邊形;
(2)圖中所有的平行四邊形為平行四邊形ABMG,平行四邊形AMCG,平行四邊形DEGM,平行四邊形ABDE;理由如下:
同(1)得:四邊形ABMG是平行四邊形,
∴AG∥BC,AB=MG,
∵CE∥AM,
∴四邊形AMCG是平行四邊形,
∵MG∥DE,CE∥AM,
∴四邊形DEGM是平行四邊形,
∴DE=MG,
∴AB=DE,
又∵DF∥AB,
∴四邊形ABDE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,菱形ABCD中,直線l⊥邊AB,并從點(diǎn)A出發(fā)向右平移,設(shè)直線l在菱形ABCD內(nèi)部截得的線段EF的長(zhǎng)為y,平移距離x=AF,y與x之間的函數(shù)關(guān)系的圖象如圖2所示,則菱形ABCD的面積為( 。
A.3B.C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車(chē)制造廠開(kāi)發(fā)一款新式電動(dòng)汽車(chē),計(jì)劃一年生產(chǎn)安裝240輛。由于抽調(diào)不出足夠的熟練工來(lái)完成新式電動(dòng)汽車(chē)的安裝,工廠決定招聘一些新工人.他們經(jīng)過(guò)培訓(xùn)后上崗,也能獨(dú)立進(jìn)行電動(dòng)汽車(chē)的安裝.生產(chǎn)開(kāi)始后,調(diào)研部門(mén)發(fā)現(xiàn):1名熟練工和2名新工人每月可安裝8輛電動(dòng)汽車(chē);2名熟練工和3名新工人每月可安裝14輛電動(dòng)汽車(chē).
(1)每名熟練工和新工人每月分別可以安裝多少輛電動(dòng)汽車(chē)?
(2)如果工廠招聘n(0<n<10)名新工人,使得招聘的新工人和抽調(diào)的熟練工剛好能完成一年的安裝任務(wù),那么工廠有哪幾種新工人的招聘方案?
(3)在(2)的條件下,工廠給安裝電動(dòng)汽車(chē)的每名熟練工每月發(fā)2000元的工資,給每名新工人每月發(fā)1200元的工資,那么工廠應(yīng)招聘多少名新工人,使新工人的數(shù)量多于熟練工,同時(shí)工廠每月支出的工資總額W(元)盡可能的少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=(<600),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AE,過(guò)點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE、BE、DF
(1)求證:BE=CD
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫(huà)出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫(huà)出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線C2是雙曲線C1:y= (x>0)繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°得到的圖形,P是曲線C2上任意一點(diǎn),點(diǎn)A在直線l:y=x上,且PA=PO,則△POA的面積等于( )
A.B.6C.3D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=a(x﹣1)(x﹣5)(a>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于P點(diǎn),過(guò)其頂點(diǎn)C作直線CH⊥x軸于點(diǎn)H.
(1)若∠APB=30°,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)P的坐標(biāo);
(2)當(dāng)∠APB最大時(shí),請(qǐng)求出a的值;
(3)點(diǎn)P、O、C、B能否在同一個(gè)圓上?若能,請(qǐng)求出a的值,若不能,請(qǐng)說(shuō)明理由.
(4)若a= ,在對(duì)稱軸HC上是否存在一點(diǎn)Q,使∠AQP=∠ABP?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn)和.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若定義橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做好點(diǎn),則圖中陰影部分區(qū)域內(nèi)(不含邊界)好點(diǎn)的個(gè)數(shù)為________;
(3)請(qǐng)根據(jù)圖象直接寫(xiě)出不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD、DEFG都是正方形,邊長(zhǎng)分別為m、n(m<n).坐標(biāo)原點(diǎn)O為AD的中點(diǎn),A、D、E在y軸上.若二次函數(shù)y=ax2的圖象過(guò)C、F兩點(diǎn),則=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com