【題目】如圖,已知//, ,∠和∠的角平分線交于點F,∠=__________°.
【答案】135;
【解析】
連接BD,根據(jù)三角形內(nèi)角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分線交于點F可得出∠CBF+∠CDF的度數(shù),由四邊形內(nèi)角和定理即可得出結論.
解:連接BD,
∵∠C+∠CBD+∠CDB=180°,BC⊥CD,
∴∠C=90°,
∴∠CBD+∠CDB=90°.
∵AB∥DE,
∴∠ABD+∠BDE=180°,
∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.
∵∠ABC和∠CDE的平分線交于點F,
∴∠CBF+∠CDF=×270°=135°,
∴∠BFD=360°-90°-135°=135°.
故答案為:135.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,如果以正方形ABCD的對角線AC為邊作第二個正方形ACEF,再以對角線AE為邊作第三個正方形AEGH,如此下去,……,已知正方形ABCD的面積為S1為1,按上述方法所作的正方形的面積依次為S2,S3,……………,則Sn(n為正整數(shù)),那么第n個正方形的面積Sn等于( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l所對應的函數(shù)表達式為y=x.過點A1(0,1)作y軸的垂線交直線l于點B1 , 過點B1作直線l的垂線交y軸于點A2;過點A2作y軸的垂線交直線l于點B2 , 則點B2的坐標為( )
A.(1,1)
B.( , )
C.(2,2)
D.( , )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對初三學生進行物理、化學實驗操作能力測試.物理、化學各有3個不同的操作實驗題目,物理實驗分別用①、②、③表示,化學實驗分別用a、b、c表示.測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.王剛同學對物理的①、②號實驗和化學的b、c號實驗準備得較好.請用畫樹狀圖(或列表)的方法,求王剛同學同時抽到兩科都準備得較好的實驗題目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一張邊長為厘米的正方形桌面,因為實際需要,需將正方形邊長增加厘米,木工師傅設計了如圖所示的三種方案:
小明發(fā)現(xiàn)這三種方案都能驗證公式:.
對于方案一,小明是這樣驗證的:
大正方形面積可表示為:,也可以表示為:,
.
請你仿照上述方法根據(jù)方案二、方案三,寫出公式的驗證過程.
(1)方案二:
(2)方案三:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,,,點為內(nèi)一點,連接,,,過點作,交的延長線于點.
(1)如圖1,求證:;
(2)如圖2,點為的中點,分別連接,,求的度數(shù);
(3)如圖3,在(2)的條件下,點為上一點,連接,點為的中點,連接,過點作,交的延長線于點,若,的面積為30,,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點為第一象限內(nèi)一點,點為軸正半軸上一點,分別連接,,為等邊三角形,點的橫坐標為4.
(1)如圖1,求線段的長;
(2)如圖2,點在線段上(點不與點、點重合),點在線段的延長線上,連接,,,設的長為,的長為,求與的關系式(不要求寫出的取值范圍)
(3)在(2)的條件下,點為第四象限內(nèi)一點,分別連接,,,為等邊三角形,線段的垂直平分線交的延長線于點,交于點,連接,交于點,連接,若,求點的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道對于一個圖形,通過不同的方法計算圖形的面積可以得到一個數(shù)學等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫出由圖2所表示的數(shù)學等式:_____________________;寫出由圖3所表示的數(shù)學等式:_____________________;
(2)利用上述結論,解決下面問題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com