【題目】在平面直角坐標(biāo)系中,A點的坐標(biāo)為(0,4),B點的坐標(biāo)為(3,0),C(a,b)為平面直角坐標(biāo)系內(nèi)一點,若∠ABC=90°,且BA=BC,求ab的值.
【答案】21或3.
【解析】
討論:當(dāng)點C在x軸上方.作CD⊥x軸,OA=4,OB=3,由于∠ABC=90°,利用等角的余角相等得到∠BAO=∠CBD,然后根據(jù)“AAS”可判斷△ABO≌△BCD,則BD=OA=4,CD=OB=3,于是C點坐標(biāo)為(7,3),得到ab=21;當(dāng)點C在x軸下方.如圖2,作CE⊥x軸,與(1)證明方法一樣可證得△ABO≌△BCE,得到BE=OA=4,CE=OB=3,則OE=4﹣3=1,所以C點坐標(biāo)為(﹣1,﹣3),得到ab=3.
當(dāng)點C在x軸上方.如圖1,作CD⊥x軸.
∵A點的坐標(biāo)為(0,4),B的坐標(biāo)為(3,0),∴OA=4,OB=3.
∵∠ABC=90°,∴∠ABO+∠CBD=90°,
∵∠ABO+∠BAO=90°,∴∠BAO=∠CBD.
在△ABO和△BCD中,∵,∴△ABO≌△BCD(AAS),∴BD=OA=4,CD=OB=3,∴C點坐標(biāo)為(7,3),∴ab=7×3=21;
當(dāng)點C在x軸下方.如圖2,作CE⊥x軸,
與(1)證明方法一樣可證得△ABO≌△BCE(AAS),∴BE=OA=4,CE=OB=3,∴OE=4﹣3=1,∴C點坐標(biāo)為(﹣1,﹣3),∴ab=﹣1×(﹣3)=3.
故ab的值為21 或3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知△ABC三個頂點的坐標(biāo)分別為A(﹣1,2),B(﹣3,4),C(﹣2,9).
(1)畫出△ABC,并求出AC所在直線的解析式.
(2)畫出△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△A1B1C1 , 并求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)y= ,下列說法中錯誤的是( )
A.當(dāng)x>0時,y隨x的增大而增大
B.當(dāng)x<0時,y隨x的增大而增大
C.當(dāng)x=1時的函數(shù)值大于x=﹣1時的函數(shù)值
D.在函數(shù)圖象所在的每個象限內(nèi),y都隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
【1】求證:△ABE≌△CDA;
【2】若∠DAC=40°,求∠EAC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠BAD,過C作CE⊥AB于E,并且AE=(AB+AD),求∠ABC+∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點D.
(1)如圖①,當(dāng)直線l與⊙O相切于點C時,求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點E,F(xiàn)時,求證:∠DAE=∠BAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計圖,則符合這一結(jié)果的實驗最有可能的是( )
A.在“石頭、剪刀、布”的游戲中,小明隨機出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個質(zhì)地均勻的正六面體骰子,向上的面點數(shù)是4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com