【題目】如圖,∠AOB30°,點(diǎn)P是∠AOB內(nèi)的一定點(diǎn),且OP6,若點(diǎn)M,N分別是射線OA,OB上異于點(diǎn)O的動點(diǎn),則△PMN周長的最小值是__________.
【答案】6;
【解析】
設(shè)點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,當(dāng)點(diǎn)M、N在CD上時,△PMN的周長最小.
解:分別作點(diǎn)P關(guān)于OA、OB的對稱點(diǎn)C、D,連接CD,分別交OA、OB于點(diǎn)M、N,連接OP、OC、OD、PM、PN.
∵點(diǎn)P關(guān)于OA的對稱點(diǎn)為C,關(guān)于OB的對稱點(diǎn)為D,
∴PM=CM,OP=OC,∠COA=∠POA;
∵點(diǎn)P關(guān)于OB的對稱點(diǎn)為D,
∴PN=DN,OP=OD,∠DOB=∠POB,
∴OC=OD=OP=6cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,
∴△COD是等邊三角形,
∴CD=OC=OD=6.
∴△PMN的周長的最小值=PM+MN+PN=CM+MN+DN≥CD=6.
故答案為:6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點(diǎn)C到地面的距離CD為28cm,坐墊中軸E處與點(diǎn)B的距離BE為4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD的中點(diǎn),點(diǎn)A關(guān)于BE的對稱點(diǎn)為G(G在矩形ABCD內(nèi)部),連接BG并延長交CD于F.
(1)如圖1,當(dāng)AB=AD時,
①根據(jù)題意將圖1補(bǔ)全;
②直接寫出DF和GF之間的數(shù)量關(guān)系.
(2)如圖2,當(dāng)AB≠AD時,如果點(diǎn)F恰好為DC的中點(diǎn),求的值.
(3)如圖3,當(dāng)AB≠AD時,如果DC=nDF,寫出求的值的思路(不必寫出計算結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,0),以下結(jié)論:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正確的是( )
A. ①②B. ③④C. ②③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC和△CDE都是等腰直角三角形,∠ACB=∠DCE=90°,且點(diǎn)A在ED的延長線上,以DE為直徑的⊙O與AB交于G、H兩點(diǎn),連接BE.
(1)求證:BE是⊙O的切線;
(2)如圖②,連接OB、OC,若tan∠CAD=,試判斷四邊形BECO的形狀,請說明理由;
(3)在(2)的條件下,若BF=,請你求出HG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的“工兵”、“連長”、“地雷”比較大小,共有6個棋子,分別為1個“工兵”,2個“連長”,3個“地雷”游戲規(guī)則如下:①游戲時,將棋反面朝上,兩人隨機(jī)各摸一個棋子進(jìn)行比賽,先摸者摸出的棋不放回;②“工兵”勝“地雷”,“地雷”勝“連長”,“連長”勝“工兵”;③相同棋子不分勝負(fù).
(1)若小方先摸,則小方摸到“排長”的事件是 ;若小方先摸到了“連長”,小輝在剩余的5個棋子中隨機(jī)摸一個,則這一輪中小方勝小輝的概率為 .
(2)如果先拿走一個“連長”,在剩余的5個棋子中小方先摸一個棋子,然后小輝在剩余的4個棋子中隨機(jī)摸一個,求這一輪中小方獲勝的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=x+1的圖象l與y軸交于點(diǎn)C,A1的坐標(biāo)為(1,0),點(diǎn)B1在直線l上,且A1B1平行于y軸,連接CA1、OB1交于點(diǎn)P1,過點(diǎn)A1作A1B2∥OB1交直線l于點(diǎn)B2,過點(diǎn)B1作B1A2∥CA1交x軸于點(diǎn)A2,A1B2與B1A2交于點(diǎn)P2,……,按此進(jìn)行下去,則點(diǎn)P2019的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點(diǎn)的坐標(biāo)為( 。
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,直線l經(jīng)過坐標(biāo)原點(diǎn)O,與拋物線的一個交點(diǎn)為D,與拋物線的對稱軸交于點(diǎn)E,連接CE,已知點(diǎn)A,D的坐標(biāo)分別為(-2,0),(6,-8).
(1)求拋物線的函數(shù)表達(dá)式,并分別求出點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)試探究拋物線上是否存在點(diǎn)F,使≌,若存在,請直接寫出點(diǎn)F的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)P是y軸負(fù)半軸上的一個動點(diǎn),設(shè)其坐標(biāo)為(0,m),直線PB與直線l交于點(diǎn)Q.試探究:當(dāng)m為何值時,是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com