【題目】中學生上學帶手機的現(xiàn)象越來越受到社會的關注,為此媒體記者隨機調(diào)查了某校若干名學生上學帶手機的目的,分為四種類型:A接聽電話;B收發(fā)短信;C查閱資料;D游戲聊天.并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計圖(不完整),請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學生.
(2)將圖1、圖2補充完整;
(3)現(xiàn)有4名學生,其中A類兩名,B類兩名,從中任選2名學生,求這兩名學生為同一類型的概率(用列表法或樹狀圖法).
【答案】
(1)200.
解:100÷50%=200,
所以調(diào)查的總?cè)藬?shù)為200名;
故答案為200.
(2)
解:
B類人數(shù)=200×25%=50(名);D類人數(shù)=200﹣100﹣50﹣40=10(名);
C類所占百分比=×100%=20%,D類所占百分比=×100%=5%,
如圖:
(3)
解:
畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中兩名學生為同一類型的結(jié)果數(shù)為4,
所以這兩名學生為同一類型的概率==.
【解析】(1)用A類的人數(shù)除以該類所占的百分比即可得到總?cè)藬?shù);
(2)分別計算出B、D兩類人數(shù)和C、D兩類所占百分比,然后補全統(tǒng)計圖;
(3)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩名學生為同一類型的結(jié)果數(shù),然后根據(jù)概率公式求解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB⊥AD,AB∥DC,AB=2,AD=DC=1,圖中圓弧所在圓的圓心為點C,半徑為 ,且點P在圖中陰影部分(包括邊界)運動.若 ,其中x,y∈R,則4x﹣y的最大值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為1,M、N分別是AD、BC邊上的點,且AB∥MN,將紙片的一角沿過點B的直線折疊,使A落在MN上,落點記為A′,折痕交AD于點E,若M是AD邊上距D點最近的n等分點(n≥2,且n為整數(shù)),則A′N= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)計算:(π﹣)0+()﹣1﹣﹣tan30°;
(2)解方程:+=1;
(3)解不等式組 , 并把解集在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校學生的課外閱讀情況,隨機抽查了10學生周閱讀用時數(shù),結(jié)果如下表:
周閱讀用時數(shù)(小時) | 4 | 5 | 8 | 12 |
學生人數(shù)(人) | 3 | 4 | 2 | 1 |
則關于這10名學生周閱讀所用時間,下列說法正確的是( 。
A.中位數(shù)是6.5
B.眾數(shù)是12
C.平均數(shù)是3.9
D.方差是6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚“社會主義核心價值觀”,市政府在廣場樹立公益廣告牌,如圖所示,為固定廣告牌,在兩側(cè)加固鋼纜,已知鋼纜底端D距廣告牌立柱距離CD為3米,從D點測得廣告牌頂端A點和底端B點的仰角分別是60°和45°.
(1)求公益廣告牌的高度AB。
(2)求加固鋼纜AD和BD的長.(注意:本題中的計算過程和結(jié)果均保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+4與x軸交于A,B兩點,與y軸交于C點,且A(﹣2,0)、B(4,0),其頂點為D,連接BD,點P是線段BD上的一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)設P點的坐標為(x,y),△PBE的面積為S,求S與x之間的函數(shù)關系式,寫出自變量x的取值范圍,并求出S的最大值;
(3)在(2)的條件下,當S取值最大值時,過點P作x軸的垂線,垂足為F,連接EF,△PEF沿直線EF折疊,點P的對應點為點P′,請直接寫出P′點的坐標,并判斷點P′是否在該拋物線上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=63°,直線MN∥BC,且分別與AB,AC相交于點D,E,若∠AEN=133°,則∠B的度數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com