【題目】如圖,一段拋物線y=﹣xx﹣5)(0≤x≤5),記為C1,它與x軸交于點OA1;將C1繞點A1旋轉(zhuǎn)180°C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°C3,交x軸于點A3;如此進行下去,得到一波浪線,若點P2018m)在此波浪線上,則m的值為_____

【答案】-6

【解析】一段拋物線y=﹣xx﹣5)(0≤x≤5),圖象與x軸交點坐標為:(0,0),(5,0).∵將C1繞點A1旋轉(zhuǎn)180°C2,x軸于點A2;

C2繞點A2旋轉(zhuǎn)180°C3x軸于點A3;

如此進行下去2018÷5=403…3可知拋物線C404x軸下方,拋物線C404的解析式為y=x﹣2015)(x﹣2020).P2018m)在第404段拋物線C404,m=2018﹣2015)(2018﹣2020=﹣6故答案為:﹣6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)計算:

2)先化簡后求值:,其中x=1y=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某景區(qū)的三個景點A、BC在同一線路上甲、乙兩名游客從景點A出發(fā)甲步行到景點C;乙乘景區(qū)觀光車先到景點B,B處停留一段時間后,再步行到景點C,甲、乙兩人同時到達景點C甲、乙兩人距景點A的路程y()與甲出發(fā)的時間x()之間的函數(shù)圖象如圖所示

1乙步行的速度為_ __/

2求乙乘景區(qū)觀光車時yx之間的函數(shù)關系式

3甲出發(fā)多長時間與乙第一次相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程式應用題.

天河食品公司收購了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術,一種是加工為普通柿餅,另一種是加工為特級霜降柿餅,也可以不需加工直接銷售.相關信息見表:

品種

每天可加工數(shù)量(噸)

每噸獲利(元)

新鮮柿子

不需加工

1000

普通柿餅

16

5000

特級霜降柿餅

8

8000

由于生產(chǎn)條件的限制,兩種加工方式不能同時進行,為此公司研制了兩種可行方案:

方案1:盡可能多地生產(chǎn)為特級霜降柿餅,沒來得及加工的新鮮柿子,在市場上直接銷售;

方案2:先將部分新鮮柿子加工為特級霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.

請問:哪種方案獲利更多?獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(2,﹣1)、B(,n)兩點.直線y=2y軸交于點C.

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求ABC的面積;

3)直接寫出不等式kx+b>在如圖所示范圍內(nèi)的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線y=x+3x軸于A點,交y軸于B點,過A、B兩點的拋物線y=﹣x2+bx+cx軸于另一點C,點D是拋物線的頂點.

(1)求此拋物線的解析式;

(2)點P是直線AB上方的拋物線上一點,(不與點A、B重合),過點Px軸的垂線交x軸于點H,交直線AB于點F,作PGAB于點G.求出PFG的周長最大值;

(3)在拋物線y=﹣x2+bx+c上是否存在除點D以外的點M,使得ABMABD的面積相等?若存在,請求出此時點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖已知它的底面形狀是正方形,高為12cm

(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?

(2)1平方米硬紙板價格為5則制作10個這的包裝盒需花費多少錢?(不考慮邊角損耗)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等腰直角ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且ADMND,BEMNE

1)求證:ADC≌△CEB

2)求證:AD+BE=DE;

3)當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,試問DE、ADBE具有怎樣的等量關系?請寫出這個等量關系,并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了決定誰將獲得僅有的一張科普報告入場劵,甲和乙設計了如下的摸球游戲:在不透明的A、B兩個口袋中分別放入編號分別為1,2,3的三個紅球及一個白球,四個小球除了顏色和編號不同外,其他沒有任何區(qū)別;甲在A口袋中摸出兩個球,乙在B口袋中摸出一個球,如果甲摸出的兩個球都是紅色的甲得1分,否則,甲得0分,如果乙摸出的球是白色的,乙得1分,否則乙得0分,得分高的獲得入場券,如果得分相同,游戲重來.

(1)運用列表或畫樹狀圖的方法求甲得1分的概率;

(2)請你用所學的知識說明這個游戲是否公平.

查看答案和解析>>

同步練習冊答案