【題目】如圖,△ABC中,∠C=90°,AC=4cm,BC=3cm若動點(diǎn)從點(diǎn)開始,按的路徑運(yùn)動,且速度為每秒1cm,設(shè)運(yùn)動的時間為x秒.
(1)當(dāng)x=__ __秒 時,CP把△ABC的面積分成相等的兩部分,并求出此時CP=__ __cm;
(2)當(dāng)x為何值時,△ABP為等腰三角形?
【答案】(1),;(2).
【解析】
(1)先根據(jù)勾股定理得出AB的長,再根據(jù)CP把△ABC的面積分成相等的兩部分,得出P為AB的中點(diǎn),從而求出x的值和CP的長
(2)△為等腰三角形,點(diǎn)只能在上且,在中運(yùn)用勾股定理列出方程即可。
解:(1) △ABC中,∠C=90°,AC=4cm,BC=3cm,
根據(jù)勾股定理得出:AB=5 cm,
CP把△ABC的面積分成相等,P為AB的中點(diǎn),=4+,=
速度為每秒1cm,= ,
當(dāng)= 秒,此時= ;
故答案為:;
(2)△為等腰三角形,點(diǎn)只能在上且.
設(shè)則,
在中,,
,
解得:,
∴當(dāng)時,△為等腰三角形。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,,E是AB上一點(diǎn),連接CE,現(xiàn)將向上方翻折,折痕為CE,使點(diǎn)B落在點(diǎn)P處.
(1)當(dāng)點(diǎn)P落在CD上時,_____;當(dāng)點(diǎn)P在矩形內(nèi)部時,BE的取值范圍是_____.
(2)當(dāng)點(diǎn)E與點(diǎn)A重合時:①畫出翻折后的圖形(尺規(guī)作圖,保留作圖痕跡);②連接PD,求證:;
(3)如圖,當(dāng)點(diǎn)Р在矩形ABCD的對角線上時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校共有1000名學(xué)生,為了了解他們的視力情況,隨機(jī)抽查了部分學(xué)生的視力,并將調(diào)查的數(shù)據(jù)整理繪制成直方圖和扇形圖.
(1)這次共調(diào)查了多少名學(xué)生?扇形圖中的、值分別是多少?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)在光線較暗的環(huán)境下學(xué)習(xí)的學(xué)生占對應(yīng)被調(diào)查學(xué)生的比例如下表:
視力 | 0.35~0.65 | 0.65~0.95 | 0.95~1.25 | 1.25~l.55 | |
比例 |
根據(jù)調(diào)查結(jié)果估計該校有多少學(xué)生在光線較暗的環(huán)境下學(xué)習(xí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn)、、分別是、、的中點(diǎn),、交于,連接、.下列結(jié)論:①;②;③;④.正確的有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買10 臺污水處理設(shè)備,現(xiàn)有A、B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:
經(jīng)調(diào)查:購買-臺A型設(shè)備比購買一-臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買4臺B型設(shè)備少4萬元.
(1)求a、b的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過47萬元,并且該月要求處理西太湖的污水量不低于1860 噸,則有哪幾種購買方案?請指出最省錢的一種購買方案,并指出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),,,均為等邊三角形,在軸正半軸上,點(diǎn),點(diǎn),點(diǎn)在內(nèi)部,點(diǎn)在的外部,,,與交于點(diǎn),連接,,,.
(1)求點(diǎn)的坐標(biāo);
(2)判斷與的數(shù)量關(guān)系,并說明理由;
(3)直接寫出的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 6 B. 4 C. 3 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com