【題目】如圖,正方形ABCD中.點E,F分別在BC,CD上,△AEF是等邊三角形.連接ACEF于點G.過點GGHCE于點H.若,則=(  )

A. 6 B. 4 C. 3 D. 2

【答案】A

【解析】解:四邊形ABCD是正方形,AB=BC=CD=AD,B=∠BCD=∠D=∠BAD=90°

∵△AEF等邊三角形,AE=EF=AF,EAF=60°∴∠BAE+∠DAF=30°

RtABERtADF中,AE=AFAB=ADRtABERtADFHL),BE=DFBC=CD,BCBE=CDDF,即CE=CF,∴△CEF是等腰直角三角形,AE=AFAC垂直平分EF,EG=GFGHCE,GHCF∴△EGH∽△EFC,SEGH=3,SEFC=12,CF=,EF=AF=,設(shè)AD=x,則DF=x,AF2=AD2+DF22=x2+x2,x=,AD=DF=,SADF=ADDF=6故選A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標出了點B的對應(yīng)點B′.

(1)在給定方格紙中畫出平移后的A′B′C′;

(2)畫出AB邊上的中線CD和BC邊上的高線AE;

(3)線段AA′與線段BB′的關(guān)系是:

(4)求四邊形ACBB′的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點A是半圓上的一個三等分點,B是劣弧的中點,點P是直徑MN上的一個動點,⊙O的半徑為1,則AP+PB的最小值_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明騎單車上學當他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店買到書后繼續(xù)去學校以下是他本次上學所用的時間與路程的關(guān)系示意圖

根據(jù)圖中提供的信息回答下列問題

1小明家到學校的路程是________

2)小明在書店停留了___________分鐘

3)本次上學途中,小明一共行駛了________ 一共用了______ 分鐘

4)在整個上學的途中_________(哪個時間段)小明騎車速度最快,最快的速度是___________/

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,⊙O的直徑AB10cm,弦AC6cm,∠ACB的平分線交⊙OD,求BC,AD,BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBC,CFAD,垂足分別為EF,AE,CF分別與BD交于點GH,且AB=

1)若tan∠ABE =2,求CF的長;

2)求證:BG=DH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說明:DCAB

(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,坐標原點O是菱形ABCD的對稱中心.邊ABx軸平行,點B1,-2),反比例函數(shù)k≠0)的圖象經(jīng)過A,C兩點.

1)求點C的坐標及反比例函數(shù)的解析式.

2)直線BC與反比例函數(shù)圖象的另一交點為E,求以O,C,E為頂點的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃購進A、B兩種商品,若購進A種商品2件和B種商品1件需45元;若購進A種商品3件和B種商品2件需70元.

(1)A、B兩種商品每件的進價分別是多少元?

(2)若購進A、B兩種商品共100件,總費用不超過1000元,最多能購進A種商品多少件?

查看答案和解析>>

同步練習冊答案