【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)寫出數(shù)軸上點(diǎn)B表示的數(shù)______;點(diǎn)P表示的數(shù)______(用含t的代數(shù)式表示)

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問多少秒時(shí)P、Q之間的距離恰好等于2?

3)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速到家動(dòng),若點(diǎn)P、Q同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上Q?

4)若MAP的中點(diǎn),NBP的中點(diǎn),在點(diǎn)P運(yùn)動(dòng)的過程中,線段MN的長度是否發(fā)生變化?若變化,請(qǐng)說明理由,若不變,請(qǐng)你畫出圖形,并求出線段MN的長.

【答案】(1)-12,8-5t;(2);(3)10;(4)MN的長度不變,值為10.

【解析】

(1)根據(jù)已知可得B點(diǎn)表示的數(shù)為8﹣20;點(diǎn)P表示的數(shù)為8﹣5t;

(2)運(yùn)動(dòng)時(shí)間為t秒,分點(diǎn)P、Q相遇前相距2,相遇后相距2兩種情況列方程進(jìn)行求解即可;

(3)設(shè)點(diǎn)P運(yùn)動(dòng)x秒時(shí)追上Q,根據(jù)P、Q之間相距20,列方程求解即可;

(4)分①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),利用中點(diǎn)的定義和線段的和差求出MN的長即可.

(1)∵點(diǎn)A表示的數(shù)為8,BA點(diǎn)左邊,AB=20,

∴點(diǎn)B表示的數(shù)是8﹣20=﹣12,

∵動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒,

∴點(diǎn)P表示的數(shù)是8﹣5t,

故答案為:﹣12,8﹣5t;

(2)若點(diǎn)P、Q同時(shí)出發(fā),設(shè)t秒時(shí)P、Q之間的距離恰好等于2;

分兩種情況:

①點(diǎn)P、Q相遇之前,

由題意得3t+2+5t=20,解得t=;

②點(diǎn)P、Q相遇之后,

由題意得3t﹣2+5t=20,解得t=

答:若點(diǎn)P、Q同時(shí)出發(fā),秒時(shí)P、Q之間的距離恰好等于2;

(3)如圖,設(shè)點(diǎn)P運(yùn)動(dòng)x秒時(shí),在點(diǎn)C處追上點(diǎn)Q,

AC=5x,BC=3x,

∵AC﹣BC=AB,

∴5x﹣3x=20,

解得:x=10,

∴點(diǎn)P運(yùn)動(dòng)10秒時(shí)追上點(diǎn)Q;

(4)線段MN的長度不發(fā)生變化,都等于10;理由如下:

①當(dāng)點(diǎn)P在點(diǎn)A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí):

MN=MP+NP=AP+BP=(AP+BP)=AB=10,

②當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí):

MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=10,

∴線段MN的長度不發(fā)生變化,其值為10.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0),C點(diǎn)的坐標(biāo)為(0,5),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(dòng)(即:沿著長方形移動(dòng)一周)

(1)寫出點(diǎn)B的坐標(biāo)   ,   );

(2)當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo);

(3)在移動(dòng)過程中,當(dāng)點(diǎn)Px軸距離為4個(gè)單位長度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)走基層欄目的一位記者乘汽車赴320km外的農(nóng)村采訪,全程的前一部分為高速公

路,后一部分為鄉(xiāng)村公路.若汽車在高速公路和鄉(xiāng)村公路上分別以某一速度勻速行駛,汽車行駛的路程y單位:km與時(shí)間x單位:h之間的關(guān)系如圖所示,則下列結(jié)論正確的是( )

A.汽車在高速公路上的行駛速度為100km/h

B.鄉(xiāng)村公路總長為90km

C.汽車在鄉(xiāng)村公路上的行駛速度為60km/h

D.該記者在出發(fā)后5h到達(dá)采訪地

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=90°,EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度數(shù).(寫出必要過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段上一動(dòng)點(diǎn),分別過點(diǎn),,連接.已知,設(shè).

(1)用含的代數(shù)式表示的值;

(2)探究:當(dāng)點(diǎn)滿足什么條件時(shí),的值最小?最小值是多少?

(3)根據(jù)(2)中的結(jié)論,請(qǐng)構(gòu)造圖形求代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,CAD=BAD,DEABE,點(diǎn)F在邊AC上,連接DF.

(1)求證:AC=AE;

(2)AC=8,AB=10,且△ABC的面積等于24,求DE的長;

(3)CF=BE,直接寫出線段AB,AF,EB的數(shù)量關(guān)系:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器公司計(jì)劃裝運(yùn)甲、乙、丙三種家電到農(nóng)村銷售(規(guī)定每輛汽車按規(guī)定滿載,且每輛汽車只能裝同一種家電).下表所示為裝運(yùn)甲、乙、丙三種家電的臺(tái)數(shù)及利潤.

每輛汽車能裝運(yùn)的臺(tái)數(shù)

40

20

30

每臺(tái)家電可獲利潤(萬元)

0.05

0.07

0.04

(1)若用8輛汽車裝運(yùn)乙、丙兩種家電190臺(tái)到A地銷售,問裝運(yùn)乙、丙的汽車各多少輛.

(2)計(jì)劃用20輛汽車裝運(yùn)甲、乙、丙三種家電720臺(tái)到B地銷售如何安排裝運(yùn),可使公司獲得36.6萬元的利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=ACAD⊥BC,CE⊥AB,AE=CE.求證:

1△AEF≌△CEB;

2AF=2CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表列出了國外幾個(gè)城市與首都北京的時(shí)差(帶正號(hào)的表示同一時(shí)刻比北京時(shí)間早的時(shí)數(shù)),如北京時(shí)間的上午10:00時(shí),東京時(shí)間的10點(diǎn)已過去了1小時(shí),現(xiàn)在已是10+1=11:00.

(1)如果現(xiàn)在是北京時(shí)間下午3:00,那么現(xiàn)在的紐約時(shí)間是多少?

(2)此時(shí)(北京時(shí)間9:00)小明想給遠(yuǎn)在巴黎的姑媽打電話,你認(rèn)為合適嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案