【題目】如圖①,在平面直角坐標(biāo)系中,A(a,0),C(b,2),且滿足(a+2)2+=0,過(guò)C作CB⊥x軸于B.
(1)求三角形ABC的面積;
(2)如圖②,若過(guò)B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)在y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)4;(2) 45°;(3) P點(diǎn)的坐標(biāo)為(0,-1)或(0,3).
【解析】試題分析:(1)根據(jù)非負(fù)數(shù)的性質(zhì)得a+2=0,b-2=0,解得a=-2,b=2,則A(-2,0),C(2,2),B(2,0),然后根據(jù)三角形面積公式計(jì)算S△ABC;
(2)作EM∥AC,如圖②,則AC∥EM∥BD,根據(jù)平行線的性質(zhì)得∠CAE=∠AEM,∠BDE=∠DEM,則∠AED=∠CAE+∠BDE,而∠CAE=∠CAB,∠BDE=∠ODB,所以∠AED=(∠CAB+∠ODB),而由AC∥BD得到∠CAB=∠OBD,于是∠CAB+∠ODB=∠OBD+∠ODB=90°,則∠AED=45°;
(3)如圖③,AC交y軸于Q,先確定Q(0,1),設(shè)P(0,t),利用三角形面積公式和S△PAC=S△APQ+S△CPQ=S△ABC得到|t-1|2+|t-1|2=4,然后解方程求出t即可得到P點(diǎn)坐標(biāo).
試題解析:(1)∵(a+2)2+=0,
∴a+2=0,b-2=0,
∴a=-2,b=2,
∴A(-2,0),C(2,2).
∵CB⊥AB,
∴B(2,0),
∴AB=4,CB=2,
則S三角形ABC=×4×2=4.
(2)作EM∥AC,如圖②,
∵AC∥BD,
∴AC∥EM∥BD,
∴∠CAE=∠AEM,∠BDE=∠DEM,
∴∠AED=∠CAE+∠BDE,
∵AE,DE分別平分∠CAB,∠ODB,
∴∠CAE=∠CAB,∠BDE=∠ODB,
∴∠AED=(∠CAB+∠ODB),
∵AC∥BD,
∴∠CAB=∠OBD,
∴∠CAB+∠ODB=∠OBD+∠ODB=90°,
∴∠AED=×90°=45°.
(3) 存在.
如圖③,AC交y軸于Q,則Q(0,1),
設(shè)P(0,t),
∵S△PAC=S△APQ+S△CPQ=S△ABC,
∴|t-1|2+|t-1|2=4,解得t=3或t=-1,
∴P點(diǎn)坐標(biāo)為(0,3),(0,-1);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程mx2+x+1=0,試按要求解答下列問(wèn)題:
(1)當(dāng)該方程有一根為1時(shí),試確定m的值;
(2)當(dāng)該方程有兩個(gè)不相等的實(shí)數(shù)根時(shí),試確定m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班同學(xué)要測(cè)量學(xué)校升國(guó)旗的旗桿高度,在同一時(shí)刻,量得某同學(xué)的身高為1.5米,影子長(zhǎng)1米,旗桿的影子長(zhǎng)是6米,則旗桿的高度是( 。
A.9米B.8米C.6米D.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三角形的兩邊長(zhǎng)分別為3cm和7cm,則此三角形的第三邊的長(zhǎng)可能是( )
A.3cm
B.4cm
C.7cm
D.11cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC的中點(diǎn),以AB、BD為鄰邊作平行四邊形ABDE,連接AD、EC。
求證:四邊形ADCE是矩形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)-24+4.3-16-3.5+0.2;(2)21×-(-21) ×+21+(-4);
(3);(4)2-2÷;(5)[-23+(-2)x4]÷(-1)2017
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)兩位數(shù),十位數(shù)字和個(gè)位數(shù)字和為10,若個(gè)位數(shù)字為a,則這個(gè)兩位數(shù)可以表示為( )
A. (10﹣a)a B. a(10﹣a)
C. 10(10﹣a)+a D. 10a+(10﹣a)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com