【題目】觀察下列等式:

2+22=232;

2+22+23=242;

2+22+23+24=252

2+22+23+24+25=262;

已知按一定規(guī)律排列的一組數(shù):220221,222,223,224,,238239,240,若220=m,則220+221+222+223+224+…+238+239+240=_____(結(jié)果用含m的代數(shù)式表示).

【答案】

【解析】

由題意可得220+221+222+223+224+…+238+239+240=220(1+2+22+…+219+220)=220(1+2212)=220(220×21),再將220=m代入即可求解.

220=m

220+221+222+223+224+…+238+239+240

=220(1+2+22+…+219+220)

=220(1+2212)

=m(2m1).

故答案為:m(2m1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形中,對(duì)角線相交于點(diǎn),點(diǎn)為線段上一點(diǎn),連接,將點(diǎn)順時(shí)針旋轉(zhuǎn)得到,連接于點(diǎn).

1)若,求的面積;

2)如圖2,線段的延長(zhǎng)線交于點(diǎn),過(guò)點(diǎn)于點(diǎn),求證:;

3)如圖3,點(diǎn)為射線上一點(diǎn),線段的延長(zhǎng)線交直線于點(diǎn),交直線于點(diǎn),過(guò)點(diǎn)垂直直線于點(diǎn),請(qǐng)直接寫出線段的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)矩形紙片,將該紙片放置在平面直角坐標(biāo)系中,點(diǎn),點(diǎn),點(diǎn)P邊上的動(dòng)點(diǎn).

(1)如圖①,經(jīng)過(guò)點(diǎn)O、P折疊該紙片,得點(diǎn)和折痕.當(dāng)點(diǎn)P的坐標(biāo)為時(shí),求的度數(shù);

(2)如圖②,當(dāng)點(diǎn)P與點(diǎn)C重合時(shí),經(jīng)過(guò)點(diǎn)O、P折疊紙片,使點(diǎn)B落在點(diǎn)的位置,交于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)過(guò)點(diǎn)P作直線,交于點(diǎn)Q,再取中點(diǎn)T,中點(diǎn)N,分別以,,,為折痕,依次折疊該紙片,折疊后點(diǎn)O的對(duì)應(yīng)點(diǎn)與點(diǎn)B的對(duì)應(yīng)點(diǎn)恰好重合,且落在線段上,A、C的對(duì)應(yīng)點(diǎn)也恰好重合,也落在線段上,求此時(shí)點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一種升降熨燙臺(tái)如圖1所示,其原理是通過(guò)改變兩根支撐桿夾角的度數(shù)來(lái)調(diào)整熨燙臺(tái)的高度.圖2是這種升降熨燙臺(tái)的平面示意圖.ABCD是兩根相同長(zhǎng)度的活動(dòng)支撐桿,點(diǎn)O是它們的連接點(diǎn),OA=OChcm)表示熨燙臺(tái)的高度.

1)如圖21.若AB=CD=110cm,∠AOC=120°,求h的值;

2)愛(ài)動(dòng)腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺(tái)的高度為120cm時(shí),兩根支撐桿的夾角∠AOC74°(如圖22).求該熨燙臺(tái)支撐桿AB的長(zhǎng)度(結(jié)果精確到lcm).

(參考數(shù)據(jù):sin37°≈0.6cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與坐標(biāo)軸分別相交于點(diǎn)AB,點(diǎn)C在線段AO上,點(diǎn)D在線段AB上,且AC=AD.將△ACD沿直線CD翻折得到△ECD

(1)AB的長(zhǎng);

(2)求證:四邊形ACED是菱形;

(3)設(shè)點(diǎn)C的坐標(biāo)為(0,),ECD與△AOB重合部分的面積為,關(guān)于的函數(shù)解析式,并直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yax2+bx+6經(jīng)過(guò)兩點(diǎn)A(﹣1,0),B30),C是拋物線與y軸的交點(diǎn).

1)求拋物線的解析式;

2)點(diǎn)Pm,n)在平面直角坐標(biāo)系第一象限內(nèi)的拋物線上運(yùn)動(dòng),設(shè)△PBC的面積為S,求S關(guān)于m的函數(shù)表達(dá)式(指出自變量m的取值范圍)和S的最大值;

3)點(diǎn)M在拋物線上運(yùn)動(dòng),點(diǎn)Ny軸上運(yùn)動(dòng),是否存在點(diǎn)M、點(diǎn)N使得∠CMN90°,且△CMN與△OBC相似,如果存在,請(qǐng)求出點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某服裝公司有型童裝80件,型童裝120件,分配給下屬的“萬(wàn)達(dá)”和“萬(wàn)象城”兩個(gè)專賣店銷售,其中140件給萬(wàn)達(dá)店,60件給萬(wàn)象城店,且都能賣完,兩商店銷售這兩種童裝每件的利潤(rùn)(元)如表:

型利潤(rùn)(元)

型利潤(rùn)(元)

萬(wàn)達(dá)店

100

80

萬(wàn)象城店

80

90

1)設(shè)分配給萬(wàn)達(dá)店型產(chǎn)品件(),請(qǐng)?jiān)谙卤碇杏煤?/span>的代數(shù)式填寫:

型分配量(件)

型分配量(件)

萬(wàn)達(dá)店

______

萬(wàn)象城店

______

______

若記這家服裝公司賣出這200件產(chǎn)品的總利潤(rùn)為(元),求關(guān)于的函數(shù)關(guān)系.

2)現(xiàn)要求總利潤(rùn)不低于18140元,請(qǐng)說(shuō)明有多少種不同分配方案,并寫出各種分配方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的對(duì)角線交于點(diǎn)O,已知則下列結(jié)論錯(cuò)誤的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于“新冠肺炎”的發(fā)生,市場(chǎng)上防護(hù)口罩出現(xiàn)熱銷.某藥店第一次用2000元購(gòu)進(jìn)若干個(gè)防護(hù)口罩,并按定價(jià)2.5/個(gè)出售,很快售完由于該防護(hù)口罩暢銷,第二次購(gòu)進(jìn)時(shí),每個(gè)防護(hù)口罩的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了25%,該藥店用3000元購(gòu)進(jìn)防護(hù)口罩的數(shù)量比第一次多了200個(gè),并把定價(jià)提高20%進(jìn)行銷售.

1)第一次購(gòu)進(jìn)時(shí),每個(gè)防護(hù)口罩的價(jià)格是多少元?

2)第二次售出800個(gè)防護(hù)口罩時(shí),出現(xiàn)了滯銷,該藥店打算降價(jià)售完剩余的防護(hù)口罩.那么該藥店每個(gè)防護(hù)口罩至多降價(jià)多少元出售,才能使第二次銷售的防護(hù)口罩不虧本?

查看答案和解析>>

同步練習(xí)冊(cè)答案