【題目】如圖,小明想測量學校教學樓的高度,教學樓AB的后面有一建筑物CD,他測得當光線與地面成22°的夾角時,教學樓在建筑物的墻上留下高2米高的影子CE;而當光線與地面成45°的夾角時,教學樓頂A在地面上的影子F與墻角C有13米的距離(點B,F(xiàn),C在同一條直線上),則AE之間的長為_____米.(結(jié)果精確到lm,參考數(shù)據(jù):sin22°≈0.375,cos22°≈0.9375,tan22°≈0.4)
【答案】27
【解析】
首先構(gòu)造直角三角形△AEM,利用tan22°= ,即可求出教學樓AB的高度;再利用Rt△AME中,cos22°=,求出AE即可.
過點E作EM⊥AB,垂足為M,如圖所示:
設(shè)AB為xm,
在Rt△ABF中,∠AFB=45°,
∴BF=AB=xm,
∴BC=BF+FC=(x+13)m,
在Rt△AEM中,AM=AB-BM=AB-CE=(x-2)m,
又tan∠AEM= ,∠AEM=22°,
∴ =0.4,
解得x≈12,
則ME=BC=BF+13≈12+13=25(m).
在Rt△AEM中,cos∠AEM=,
∴AE= ,
故AE的長約為27m.
故答案是:27.
科目:初中數(shù)學 來源: 題型:
【題目】已知為等邊三角形,點為直線上一動點(點不與點、點重合).連接,以為邊向逆時針方向作等邊,連接,
(1)如圖1,當點在邊上時:
①求證:;
②判斷之間的數(shù)量關(guān)系是 ;
(2)如圖2,當點在邊的延長線上時,其他條件不變,判斷之間存在的數(shù)量關(guān)系,并寫出證明過程;
(3)如圖3,當點在邊的反向延長線上時,其他條件不變,請直接寫出之間存在的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC∽△ADE,AB=30cm,BD=18cm,BC=20cm,∠BAC=75°,∠ABC=40°.
求:(1)∠ADE和∠AED的度數(shù);
(2)DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D在邊AB上,點E在邊AC的左側(cè),連接AE.
(1)求證:AE=BD;
(2)試探究線段AD、BD與CD之間的數(shù)量關(guān)系;
(3)過點C作CF⊥DE交AB于點F,若BD:AF=1:2,CD=,求線段AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數(shù)的圖象經(jīng)過點M,N.
(1)求反比例函數(shù)的解析式;
(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸分別交于點A、B,與y軸交于點C,且OA=1,OB=3,頂點為D,對稱軸交x軸于點Q.
(1)求拋物線對應的二次函數(shù)的表達式;
(2)點P是拋物線的對稱軸上一點,以點P為圓心的圓經(jīng)過A、B兩點,且與直線CD相切,求點P的坐標;
(3)在拋物線的對稱軸上是否存在一點M,使得△DCM∽△BQC?如果存在,求出點M的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點上,建立平面直角坐標系如圖所示.若P是軸上使得∣PA—PB∣的值最大的點,Q是軸上使得QA+QB的值最小的點,則OP·OQ=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:同學們在操場的一個圓形區(qū)域內(nèi)玩投擲沙包的游戲,圓形區(qū)域由5個過同一點且半徑不同的圓組成.經(jīng)過多次實驗,發(fā)現(xiàn)沙包如果都能落在區(qū)域內(nèi)時,落在2、4兩個陰影內(nèi)的概率分別是0.36和0.21,設(shè)最大的圓的直徑是5米,則1、3、5三個區(qū)域的面積和是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com