【題目】(感知)如圖①,點C是AB中點,CD⊥AB,P是CD上任意一點,由三角形全等的判定方法“SAS”易證△PAC≌△PBC,得到線段垂直平分線的一條性質(zhì)“線段垂直平分線上的點到線段兩端的距離相等”
(探究)如圖②,在平面直角坐標(biāo)系中,直線y=-x+1分別交x軸、y軸于點A和點B,點C是AB中點,CD⊥AB交OA于點D,連結(jié)BD,求BD的長
(應(yīng)用)如圖③
(1)將線段AB繞點A順時針旋轉(zhuǎn)90°得到線段AB′,請在圖③網(wǎng)格中畫出線段AB;
(2)若存在一點P,使得PA=PB′,且∠APB′≠90°,當(dāng)點P的橫、縱坐標(biāo)均為整數(shù)時,則AP長度的最小值為______.
【答案】探究:BD的長為;應(yīng)用:(1)見解析;(2)5.
【解析】
探究:根據(jù)直線解析式,求出點A、B坐標(biāo),得到BO、AO的長,設(shè)BD的長為a,根據(jù)勾股定理列方程可求出BD;
應(yīng)用:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)作圖即可;
(2)根據(jù)題意可知P點坐標(biāo)在AB’線段垂直平分線上,如圖所示,點P’是垂直平分線上最近的格點,但是此時,不符合題意,根據(jù)網(wǎng)格特點可知垂直平分線上下一個格點位置,由網(wǎng)格特點和勾股定理可得符合題意的AP=5.
解:探究:
由題意得:
當(dāng)時,;當(dāng)時,;
,.
,.
設(shè)BD的長為a.
∵點C是AB中點,交OA于點D,
,.
在中,,
,,
,.
的長為.
應(yīng)用:(1)如圖,線段即為所求.
(2)根據(jù)題意可知P點坐標(biāo)在AB’線段垂直平分線上,如圖所示,點P’是垂直平分線上最近的格點,但是此時,不符合題意,根據(jù)網(wǎng)格特點可知垂直平分線上下一個格點位置,由網(wǎng)格特點和勾股定理可得符合題意的AP=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.學(xué)校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)補全條形統(tǒng)計圖,補全扇形統(tǒng)計圖中樂器所占的百分比;
(2)本次調(diào)查學(xué)生選修課程的“眾數(shù)”是__________;
(3)若該校有1200名學(xué)生,請估計選修繪畫的學(xué)生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形AOBC中,O為坐標(biāo)原點,OA、OB分別在x軸、y軸上,點B的坐標(biāo)為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標(biāo)為( )
A. (,)B. (2,)C. (,)D. (,3﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸,軸于,兩點.點的坐標(biāo)為,拋物線經(jīng)過,兩點.
(1)求拋物線的表達式;
(2)如圖1,是線段上一點,連接,若的值最小,求點坐標(biāo);
(3)如圖2,在(2)的前提下,直線與直線的交點為,過點作軸的平行線交拋物線于點,若是拋物線上一點,是軸上一點,是否存在以,,,為頂點且為邊的平行四邊形,若存在,求出點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a≠0)的圖像經(jīng)過點A(0,-3)、B(1,0)、C(3,0),聯(lián)結(jié)AB、AC.
(1)求這個二次函數(shù)的解析式;
(2)點D是線段AC上的一點,聯(lián)結(jié)BD,如果,求tan∠DBC的值;
(3)如果點E在該二次函數(shù)圖像的對稱軸上,當(dāng)AC平分∠BAE時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2-2x-3,點P在該函數(shù)的圖象上,點P到x軸、y軸的距離分別為d1、d2.設(shè)d=d1+d2,下列結(jié)論中: ①d沒有最大值; ②d沒有最小值; ③ -1<x<3時,d 隨x的增大而增大; ④滿足d=5的點P有四個.其中正確結(jié)論的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC中,∠ACB=90°,AC=3,BC=7,點P是邊AC上不與點A、C重合的一點,作PD∥BC交AB邊于點D.
(1)如圖1,將△APD沿直線AB翻折,得到△AP'D,作AE∥PD.求證:AE=ED;
(2)將△APD繞點A順時針旋轉(zhuǎn),得到△AP'D',點P、D的對應(yīng)點分別為點P'、D',
①如圖2,當(dāng)點D'在△ABC內(nèi)部時,連接P′C和D'B,求證:△AP'C∽△AD'B;
②如果AP:PC=5:1,連接DD',且DD'=AD,那么請直接寫出點D'到直線BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形中,邊的長為,邊的長為,是長方形邊上的一個動點,當(dāng)三點構(gòu)成的三角形為等腰三角形時,的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣3ax﹣4a的圖象與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C(0,﹣3).
(1)求二次函數(shù)的表達式及點A、點B的坐標(biāo);
(2)若點D在二次函數(shù)圖象上,且,求點D的橫坐標(biāo);
(3)將直線BC向下平移,與二次函數(shù)圖象交于M,N兩點(M在N左側(cè)),如圖2,過M作ME∥y軸,與直線BC交于點E,過N作NF∥y軸,與直線BC交于點F,當(dāng)MN+ME的值最大時,求點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com