16.如圖,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,過E作EF⊥AD,垂足為H,并交BC延長線于F.
(1)求證:AE=ED;
(2)請(qǐng)猜想∠B與∠CAF的大小關(guān)系,并證明你的結(jié)論.

分析 (1)感覺平行線的性質(zhì)和角平分線的定義即刻得到結(jié)論;
(2)根據(jù)線段的垂直平分線的性質(zhì)證明FA=FD,得到∠FAD=∠FDA,根據(jù)三角形外角的性質(zhì)得到∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,根據(jù)等量代換得到答案.

解答 證明:(1)∵DE∥AC,
∴∠EDA=∠DAC,
∵AD平分∠BAC,
∴∠EAD=∠DAC,
∴∠EAD=∠EDA∴AE=ED;
(2)∠B=∠CAF,
證明:∵AE=ED,EF⊥AD,
∴EF是AD的垂直平分線,
∴FA=FD,
∴∠FAD=∠FDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,
∴∠B=∠CAF.

點(diǎn)評(píng) 本題考查的是線段的垂直平分線的性質(zhì)、角平分線的定義和三角形的外角的性質(zhì),掌握線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知x1,x2是關(guān)于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實(shí)數(shù)根,若(x1-1)(x2-1)=28,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

7.解方程:
(1)4x-3(20-x)=3
(2)$\frac{3x+1}{2}$-$\frac{x-1}{6}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.先化簡,再求值;
(a-2b)2+(a-b)(a+b)-2(a-b)(a-3b),其中a=-$\frac{1}{4}$,b=-$\sqrt{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.先化簡,再求值:
2(x2y+3xy2)-3(2xy2-4x2y),其中x=-1,y=-$\frac{1}{2}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.作圖題.
(1)如圖1,已知△ABC,∠BAC=90°,請(qǐng)用尺規(guī)過點(diǎn)A作一條直線,使其將△ABC分成兩個(gè)相似的三角形.
(2)如圖2,已知⊙O,用尺規(guī)作⊙O的內(nèi)接正四邊形ABCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.乘法公式的探究與應(yīng)用:

(1)如圖甲,邊長為a的大正方形中有一個(gè)邊長為b的小正方形,請(qǐng)你寫出陰影部分面積是a2-b2(寫成兩數(shù)平方差的形式)
(2)小穎將陰影部分裁下來,重新拼成一個(gè)長方形,如圖乙,則長方形的長是a+b,寬是a-b,面積是(a+b)(a-b)(寫成多項(xiàng)式乘法的形式).
(3)比較甲乙兩圖陰影部分的面積,可以得到公式(兩個(gè))
公式1:(a+b)(a-b)=a2-b2
公式2:a2-b2=(a+b)(a-b)
(4)運(yùn)用你所得到的公式計(jì)算:10.3×9.7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.解方程:x-$\frac{x-1}{2}$=$\frac{2}{3}$$-\frac{x+2}{6}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.

(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案