【題目】如圖,在△ABC中,AB=AC,點(diǎn)E為BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),過(guò)點(diǎn)E作射線EF交AC于點(diǎn)F,使∠AEF=∠B.
(1)判斷∠BAE與∠CEF的大小關(guān)系,并說(shuō)明理由;
(2)請(qǐng)你探索:當(dāng)△AEF為直角三角形時(shí),求∠AEF與∠BAE的數(shù)量關(guān)系.
【答案】(1)∠BAE=∠FEC(2)2∠AEF與∠BAE的數(shù)量關(guān)系是互余
【解析】
試題分析:(1)根據(jù)三角形內(nèi)角與外角的關(guān)系可得∠B+∠BAE=∠AEC=∠AEF+∠FEC,再由條件∠AEF=∠B可得∠BAE=∠FEC;
(2)分別根據(jù)當(dāng)∠AFE=90°時(shí),以及當(dāng)∠EAF=90°時(shí)利用外角的性質(zhì)得出即可.
解:(1)∠BAE=∠FEC;
理由如下:
∵∠B+∠BAE=∠AEC,∠AEF=∠B,
∴∠BAE=∠FEC;
(2)如圖1,當(dāng)∠AFE=90°時(shí),
∵∠B+∠BAE=∠AEF+∠CEF,
∠B=∠AEF=∠C,
∴∠BAE=∠CEF,
∵∠C+∠CEF=90°,
∴∠BAE+∠AEF=90°,
即∠AEF與∠BAE的數(shù)量關(guān)系是互余;
如圖2,當(dāng)∠EAF=90°時(shí),
∵∠B+∠BAE=∠AEF+∠1,
∠B=∠AEF=∠C,
∴∠BAE=∠1,
∵∠C+∠1+∠AEF=90°,
∴2∠AEF+∠1=90°,
即2∠AEF與∠BAE的數(shù)量關(guān)系是互余.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定:(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求a、b的值;
②若關(guān)于m的方程T(1﹣m,﹣m2)=﹣2有實(shí)數(shù)解,求實(shí)數(shù)m的值;
(2)若T(x,y)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a、b應(yīng)滿足怎樣的關(guān)系式?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式中,從左到右的變形是因式分解的是( )
A. x 2 2 x 3 x 12 2 B. x y x y x 2 y 2
C. x 2 y 2 x y 2 D. 2 x 2 y 2x y
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P點(diǎn)在平面直角坐標(biāo)系的第二象限,P到x軸的距離為1,到y軸的距離為2,則P點(diǎn)的坐標(biāo)是( )
A. (-1,2) B. (-2,1) C. (1,-2) D. (2,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(a,b),ab>0,a+b<0,則點(diǎn)P在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書店把一本新書按標(biāo)價(jià)的九折出售,仍可獲利20%.若該書的進(jìn)價(jià)為21元,則標(biāo)價(jià)為( )
A. 26元 B. 27元 C. 28元 D. 29元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓O的直徑AB為13cm,弦AC為5cm,∠ACB的平分線圓O于D,則CD長(zhǎng)是_______cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com