【題目】如圖,等腰三角形中,,AD為底邊BC上的高,動點從點D出發(fā),沿DA方向勻速運動,速度為,運動到點停止,設(shè)運動時間為,連接BP(0≤t≤8)

1)求AD的長;

2)設(shè)△APB的面積為ycm),求yt之間的函數(shù)關(guān)系式;

3)是否存在某一時刻t,使得SAPB:SABC=1:3,若存在,求出的值;若不存在,說明理由.

4)是否存在某一時刻,使得點P在線段AB的垂直平分線上,若存在,求出的值;若不存在,說明理由.

【答案】18;(2y243t0t8);(3)存在,;(4)存在,

【解析】

1)利用等腰三角形的性質(zhì)以及勾股定理解決問題即可.

2)根據(jù)ySAPBSABDSPBD,化簡計算即可.

3)由題意SAPBSABC13,構(gòu)建方程即可解決問題.

4)由題意點P在線段AB的垂直平分線上,推出PAPB,在RtPBD中,根據(jù)PB2PD2+BD2,構(gòu)建方程即可解決問題.

1)∵ABAC,ADBC

BCDC6cm,

RtABD中,∵∠ADB90°,AB10cm,BD6cm,

AD8cm).

2ySAPBSABDSPBD×6×8×6×t=﹣3t+24

y243t0≤t≤8).

3)∵SAPBSABC13,

∴(243t):×12×813

解得t

∴滿足條件的t的值為

4)由題意點P在線段AB的垂直平分線上,

PAPB,

RtPBD中,∵PB2PD2+BD2

t2=(8t2+62,

解得t

∴滿足條件的t的值為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】2016雙十一期間,某快遞公司計劃租用甲、乙兩種車輛快遞貨物,從貨物量來計算:若租用兩種車輛合運,10天可以完成任務;若單獨租用乙種車輛,完成任務的天數(shù)是單獨租用甲種車輛完成任務天數(shù)的2倍.

(1)求甲、乙兩種車輛單獨完成任務分別需要多少天?

(2)已知租用甲、乙兩種車輛合運需租金65000元,甲種車輛每天的租金比乙種車輛每天的租金多1500元,試問:租甲和乙兩種車輛、單獨租甲種車輛、單獨租乙種車輛這三種租車方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,C,為半徑是6的⊙O上兩點,點B的中點,以線段BA,BC為鄰邊作菱形ABCD,使點D落在⊙O內(nèi)(不含圓周上),則下列結(jié)論:①直線BD必過圓心O;②菱形ABCD的邊長a的取值范圍是0<a<10;③若點D與圓心O重合,則∠ABC=120°;④若DO=2,則菱形ABCD的邊長為.其中正確的是(  )

A. ①③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為豐富綜合實踐活動,開設(shè)了四個實驗室如下:A.物理;B.化學;C.信息;D.生物.為了解學生最喜歡哪個實驗室,隨機抽取了部分學生進行調(diào)查,每位被調(diào)查的學生都選擇了一個自己最喜歡的實驗室,調(diào)查后將調(diào)查結(jié)果繪制成了如圖統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題

1)求這次被調(diào)查的學生人數(shù).

2)請將條形統(tǒng)計圖補充完整.

3)求出扇形統(tǒng)計圖中B對應的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時間x(小時)之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時)之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:

1)求線段CD對應的函數(shù)關(guān)系式;

2)在轎車追上貨車后到到達乙地前,何時轎車在貨車前30千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果mx+n=0,其中mn為有理數(shù),x為無理數(shù),那么m=0n=0.

1)如果,其中a、b為有理數(shù),那么a= ,b= .

2)如果,其中a、b為有理數(shù),求a+2b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點MBA的延長線上,MD切⊙O于點D,過點BBNMD于點C,連接AD并延長,交BN于點N

(1)求證:AB=BN

(2)若⊙O半徑的長為3,cosB=,求MA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊ABC中,線段AMBC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊CDE,連結(jié)BE

(1)求∠CAM的度數(shù);

(2)若點D在線段AM上時,求證:ADCBEC

(3)當動D直線AM上時,設(shè)直線BE與直線AM的交點為O,試判斷AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題6分)甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.

(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;

(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.

查看答案和解析>>

同步練習冊答案