【題目】已知△ABC中,∠BAC=100°.

1)若∠ABC和∠ACB的角平分線交于點(diǎn)O,如圖1所示,試求∠BOC的大;

2)若∠ABC和∠ACB的三等分線(即將一個(gè)角平均分成三等分的射線)相交于OO1,如圖2所示,試求∠BOC的大;

3)如此類推,若∠ABC和∠ACBn等分線自下而上依次相交于O,O1O2…,如圖3所示,試探求∠BOC的大小與n的關(guān)系,并判斷當(dāng)∠BOC=170°時(shí),是幾等分線的交線所成的角.

【答案】1;(2 ;(3)∠BOC=180°-,八等分線.

【解析】

根據(jù)三角形內(nèi)角和定理先求得∠ABC+ACB的度數(shù),

1)根據(jù)角平分線的定義可求得∠OBC+OCB的度數(shù),從而利用三角形內(nèi)角和定理求∠BOC的度數(shù);

2)根據(jù)三等分線的定義可求得∠OBC+OCB的度數(shù),從而利用三角形內(nèi)角和定理求∠BOC的度數(shù);

3)根據(jù)n等分線的定義可表示出∠OBC+OCB的度數(shù),從而利用三角形內(nèi)角和定理表示出∠BOC的度數(shù),然后將∠BOC=170°代入求出n的值即可.

解:∵∠BAC=100°,

∴∠ABC+ACB=180°-100°=80°,

1)∵點(diǎn)O是∠ABC和∠ACB的角平分線的交點(diǎn),

∴∠OBC+OCB=ABC +ACB =(∠ABC+ACB=40°

∴∠BOC=180°-(∠OBC+OCB=180°-40°=140°;

2)∵點(diǎn)O是∠ABC和∠ACB的三等分線的交點(diǎn),

∴∠OBC+OCB=ABC +ACB =(∠ABC+ACB=,

∴∠BOC=180°-(∠OBC+OCB=180°-=

3)∵點(diǎn)O是∠ABC和∠ACBn等分線的交點(diǎn),

∴∠OBC+OCB=ABC +ACB =(∠ABC+ACB=

∴∠BOC=180°-(∠OBC+OCB=180°-,

當(dāng)∠BOC=170°時(shí),即170°=180°-,

解得:n=8,即是八等分線的交線所成的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為正六邊形ABCDEF的中心,點(diǎn)MAF中點(diǎn),以點(diǎn)O為圓心,以OM的長(zhǎng)為半徑畫弧得到扇形MON,點(diǎn)NBC上;以點(diǎn)E為圓心,以DE的長(zhǎng)為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法按月計(jì)算每戶家庭的電費(fèi),分兩檔收費(fèi):第一檔是當(dāng)月用電量不超過240度時(shí)實(shí)行基礎(chǔ)電價(jià);第二檔是當(dāng)用電量超過240度時(shí),其中的240度仍按照基礎(chǔ)電價(jià)計(jì)費(fèi),超過的部分按照提高電價(jià)收費(fèi).設(shè)每個(gè)家庭月用電量為x 度時(shí),應(yīng)交電費(fèi)為y 元.具體收費(fèi)情況如折線圖所示,請(qǐng)根據(jù)圖象回答下列問題:

(1)“基礎(chǔ)電價(jià)____________ 度;

(2)求出當(dāng)x240 時(shí),y與x的函數(shù)表達(dá)式;

(3)若紫豪家六月份繳納電費(fèi)132元,求紫豪家這個(gè)月用電量為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、A、F三點(diǎn)在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請(qǐng)你用其中兩個(gè)作為條件,另一個(gè)作為結(jié)論,構(gòu)造一個(gè)真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買A,B兩種型號(hào)的機(jī)器人搬運(yùn)材料.已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg材料,且A型機(jī)器人搬運(yùn)1000kg材料所用的時(shí)間與B型機(jī)器人搬運(yùn)800kg材料所用的時(shí)間相同.

(1)求A,B兩種型號(hào)的機(jī)器人每小時(shí)分別搬運(yùn)多少材料;

(2)該公司計(jì)劃采購A,B兩種型號(hào)的機(jī)器人共20臺(tái),要求每小時(shí)搬運(yùn)材料不得少于2800kg,則至少購進(jìn)A型機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為1的圓心A在拋物線y=(x-3)2-1上,AB//x軸交 于點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),當(dāng)點(diǎn)A在拋物線上運(yùn)動(dòng)時(shí),點(diǎn)B隨之運(yùn)動(dòng)得到的圖象的函數(shù)表達(dá)式為(

A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,設(shè)一質(zhì)點(diǎn)MP0(1,0)處向上運(yùn)動(dòng)1個(gè)單位至P1(1,1),然后向左運(yùn)動(dòng)2個(gè)單位至P2處,再向下運(yùn)動(dòng)3個(gè)單位至P3處,再向右運(yùn)動(dòng)4個(gè)單位至P4處,再向上運(yùn)動(dòng)5個(gè)單位至P5處,……如此繼續(xù)運(yùn)動(dòng)下去.設(shè)Pn(xn,yn),n=1、2、3、……,則x1x2+……+x2014x2015的值為(

A. 1 B. 3 C. -1 D. 2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、分別是、的中點(diǎn),連接,過的延長(zhǎng)線于.若四邊形的周長(zhǎng)是,的長(zhǎng)為,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填空并解答相關(guān)問題:

1)觀察下列數(shù)1,39,27,81…,發(fā)現(xiàn)從第二項(xiàng)開始,每一項(xiàng)除以前一項(xiàng)的結(jié)果是一個(gè)常數(shù),這個(gè)常數(shù)是________;根據(jù)此規(guī)律,如果an n為正整數(shù))表示這列數(shù)的第n項(xiàng),那么an =__________;

你能求出它們的和嗎?

計(jì)算方法:如果要求1+3+32+33+…+320的值,

可令S=1+3+32+33+…+320

將①式兩邊同乘以3,得3S=3+32+33+…+320+321

由②式左右兩邊分別減去①式左右兩邊,

3S-S=3+32+33+…+320+321)-(1+3+32+33+…+320),

2S=3211,兩邊同時(shí)除以2.

2)你能用類比的思想求1+6+62+63+…+6100的值嗎?寫出求解過程.

3)你能用類比的思想求1+m+m2+m3+…+mn(其中mn≠0,m≠1)的值嗎?寫出求解過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案