【題目】裝商店銷售型和型電腦的利潤為元,銷售型和臺, 型電腦的利潤為元.

1)求每臺型電腦和型電腦的銷售利潤;

2)該商店計劃一次購進兩種型號的電腦共 臺,其中型電腦的進貨量不超過型電腦的倍,購進型電腦臺,這臺電腦的銷售總利潤為元.間該商店購進服各多少臺.才能使銷售利潤最大?

【答案】1)每臺型電腦的銷售利潤為元,每臺型電腦的銷售利潤為元;(2)商店購進型電腦臺,型電腦臺,才能使銷售總利潤最大.

【解析】

1)設(shè)每臺A型電腦銷售利潤為a元,每臺B型電腦的銷售利潤為b元;然后根據(jù)銷售10A型和20B型電腦的利潤為4000元,銷售20A型和10B型電腦的利潤為3500元列出方程組,然后求解即可;
2)根據(jù)總利潤等于兩種電腦的利潤之和列式整理,再根據(jù)B型電腦的進貨量不超過A型電腦的2倍列不等式求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出利潤的最大值即可.

解:設(shè)每臺型電腦的銷售利潤為元,每臺型電腦的銷售利潤為

則有

解得

答:每臺型電腦的銷售利潤為元,每臺型電腦的銷售利潤為

根據(jù)題意得

解得

的增大而減。

為正整數(shù)

當(dāng)最小時,

取最大值,

此時

答:商店購進型電腦臺,型電腦臺,才能使銷售總利潤最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)是常數(shù),)圖象的對稱軸是直線,其圖象的一部分如圖所示,下列說法中①;②;③當(dāng)時,;④;⑤.正確的結(jié)論有(

A.①②④B.②③④C.①③⑤D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了緩解城市交通壓力,決定修建人行天橋,原設(shè)計天橋的樓梯與地面的夾角為45°(∠ABC=45°),BC=4.2 m,后考慮安全因素,將樓梯角B移到CB的延長線上點D處,使∠ADC=23°(如圖所示).求BD的長(精確到0.1 m).(參考數(shù)據(jù):sin 67°≈0.92cos 67°≈0.39,tan 67°≈2.36

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tanAOD=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yaxm2+2mm0)經(jīng)過原點,其頂點為P,與x軸的另一交點為A

1P點坐標(biāo)為   ,A點坐標(biāo)為   ;(用含m的代數(shù)式表示)

2)求出am之間的關(guān)系式;

3)當(dāng)m0時,若拋物線yaxm2+2m向下平移m個單位長度后經(jīng)過點(11),求此拋物線的表達式;

4)若拋物線yaxm2+2m向下平移|m|個單位長度后與x軸所截的線段長,與平移前相比有什么變化?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,ABC的頂點A、B、C均在格點上.

1)∠ACB的大小為   ;

2)在如圖所示的網(wǎng)格中以A為中心,取旋轉(zhuǎn)角等于∠BAC,把ABC逆時針旋轉(zhuǎn),請用無刻度的直尺,畫出旋轉(zhuǎn)后的AB'C',保留作圖痕跡,不要求證明;

3)點PBC邊上任意一點,在(2)的旋轉(zhuǎn)過程中,點P的對應(yīng)點為P',當(dāng)線段CP'最短時,CP'的長度為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2bxc(a≠0)的對稱軸為直線x1,與x軸的一個交點坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:① 4ac<b2;② 方程ax2bxc0的兩個根分別是x1-1,x23;③ 3ac>0;④當(dāng) y>0時,x的取值范圍是-1<x<3;⑤ 當(dāng)x<0時,yx的增大而增大.其中正確的結(jié)論序號有_____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點,點,點中點,點與點關(guān)于軸對稱.

1)點的坐標(biāo)為___________;

2)連結(jié),求的正切值;

3)拋物線的對稱軸為直線,在拋物線上是否存在點不重合),使全等?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,點,點,的中線軸交于點,且經(jīng)過,三點.

1)求圓心的坐標(biāo);

2)若直線相切于點,交軸于點,求直線的函數(shù)表達式;

3)在過點且以圓心為頂點的拋物線上有一動點,過點軸,交直線于點.若以為半徑的與直線相交于另一點.當(dāng)時,求點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案