【題目】如圖,對(duì)折矩形紙片使重合,得到折痕,再把紙片展平.上一點(diǎn),將沿折疊,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在上.若,則的長是_________

【答案】

【解析】

RtABM中,解直角三角形求出∠BA′M30°,再證明∠ABE30°即可解決問題.

解:∵將矩形紙片ABCD對(duì)折一次,使邊ADBC重合,得到折痕MN,
AB2BM,∠A′MB90°,MNBC
∵將ABE沿BE折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A′落在MN上.
A′BAB2BM
RtA′MB中,∵∠A′MB90°
sinMA′B,
∴∠MA′B30°
MNBC,
∴∠CBA′=∠MA′B30°
∵∠ABC90°,
∴∠ABA′60°,
∴∠ABE=∠EBA′30°,
BE
故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若拋物線軸相交于,兩點(diǎn),與軸相交于點(diǎn),直線經(jīng)過點(diǎn),

1)求拋物線的解析式;

2)點(diǎn)是直線下方拋物線上一動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn),交于點(diǎn),連接

①線段是否有最大值?如果有,求出最大值;如果沒有,請(qǐng)說明理由;

②在點(diǎn)運(yùn)動(dòng)的過程中,是否存在點(diǎn),恰好使是以為腰的等腰三角形?如果存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

1)求yx之間的函數(shù)表達(dá)式;

2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤?最大利潤是多少?

3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,以為直徑的圓交于點(diǎn),過點(diǎn)的⊙的切線交于點(diǎn),則⊙的半徑是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校7名學(xué)生在某次測量體溫(單位:℃)時(shí)得到如下數(shù)據(jù):36.336.4,36.5,36.7,36.6,36.5,36.5,對(duì)這組數(shù)據(jù)描述正確的是( 。

A.眾數(shù)是36.5B.中位數(shù)是36.7

C.平均數(shù)是36.6D.方差是0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)健康環(huán)保,自帶水杯已成為一種好習(xí)慣,某超市銷售甲,乙兩種型號(hào)水杯,進(jìn)價(jià)和售價(jià)均保持不變,其中甲種型號(hào)水杯進(jìn)價(jià)為25/個(gè),乙種型號(hào)水杯進(jìn)價(jià)為45/個(gè),下表是前兩月兩種型號(hào)水杯的銷售情況:

時(shí)間

銷售數(shù)量(個(gè))

銷售收入(元)(銷售收入=售價(jià)×銷售數(shù)量)

甲種型號(hào)

乙種型號(hào)

第一月

22

8

1100

第二月

38

24

2460

1)求甲、乙兩種型號(hào)水杯的售價(jià);

2)第三月超市計(jì)劃再購進(jìn)甲、乙兩種型號(hào)水杯共80個(gè),這批水杯進(jìn)貨的預(yù)算成本不超過2600元,且甲種型號(hào)水杯最多購進(jìn)55個(gè),在80個(gè)水杯全部售完的情況下設(shè)購進(jìn)甲種號(hào)水杯a個(gè),利潤為w元,寫出wa的函數(shù)關(guān)系式,并求出第三月的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,RtOAB的直角頂點(diǎn)Bx軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)yx0)的圖象經(jīng)過OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若ACD的面積是2,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,AB=10,AC=6,連結(jié)OC,弦AD分別交OC,BC于點(diǎn)E,F,其中點(diǎn)EAD的中點(diǎn).

1)求證:∠CAD=CBA

2)求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批成本為每件40元的商品,若商店按單價(jià)不低于成本價(jià),且不高于70元銷售,且銷售單價(jià)為正整數(shù),經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系如表:

銷售單價(jià)x/

40

50

60

70

每天的銷售量y/

140

120

100

80

(1)請(qǐng)你認(rèn)真分析表中所給的數(shù)據(jù),用你學(xué)過的一次函數(shù)、反比例函數(shù)和二次函數(shù)中的一種來表示yx之間的變化規(guī)律,說明選擇這種函數(shù)的理由,并求出它的函數(shù)表達(dá)式和自變量的取值范圈.

(2)銷售單價(jià)定為多少元時(shí),才能使銷售該商品每天獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案