【題目】如圖,矩形ABCD的頂點A、B在x軸的正半軸上,反比例函數y=(k≠0)在第一象限內的圖象經過點D,交BC于點E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
科目:初中數學 來源: 題型:
【題目】我們知道,與三角形各邊都相切的圓叫做三角形的內切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊分別相切于點則四邊形叫做的外切四邊形.
(1)如圖2,試探究圓外切四邊形的兩組對邊與之間的數量關系,猜想: (橫線上填“>”,“<”或“=”);
(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);
(3)用文字敘述上面證明的結論: ;
(4)若圓外切四邊形的周長為相鄰的三條邊的比為,求此四邊形各邊的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經過點D,分別交AC,AB于點E,F.
(1)試判斷直線BC與⊙O的位置關系,并說明理由;
(2)若BD=2,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與軸,軸分別相交于點.點是軸上動點,點從點出發(fā)向原點O運動,點在點右側,.過點作于點將沿直線翻折,得到連接.設與重合部分面積為求:
(1)求線段的長(用含的代數式表示);
(2)求關于的函數解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個問題解決往往經歷發(fā)現猜想——探索歸納——問題解決的過程,下面結合一道幾何題來體驗一下.
(發(fā)現猜想)(1)如圖①,已知∠AOB=70°,∠AOD=100°,OC為∠BOD的角平分線,則∠AOC的度數為 ;.
(探索歸納)(2)如圖①,∠AOB=m,∠AOD=n,OC為∠BOD的角平分線. 猜想∠AOC的度數(用含m、n的代數式表示),并說明理由.
(問題解決)(3)如圖②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射線OB繞點O以每秒20°逆時針旋轉,射線OC繞點O以每秒10°順時針旋轉,射線OD繞點O每秒30°順時針旋轉,三條射線同時旋轉,當一條射線與直線OA重合時,三條射線同時停止運動. 運動幾秒時,其中一條射線是另外兩條射線夾角的角平分線?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖①是放置在水平面上的臺燈,圖②是其側面示意圖(臺燈底座高度忽略不計),其中燈臂AC=44cm,燈罩CD=32cm,燈臂與底座構成的∠CAB=60°.CD可以繞點C上下調節(jié)一定的角度.使用發(fā)現:當CD與水平線所成的角為30°時,臺燈光線最佳.現測得點D到桌面的距離為54.06cm.請通過計算說明此時臺燈光線是否為最佳?(參考數據:取1.73).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=90°,將扇形OAB繞點B逆時針旋轉,得到扇形BDC,若點O剛好落在弧AB上的點D處,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點P(,)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d== = =.
根據以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y=x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com