【題目】如圖,補充下列結(jié)論和依據(jù).

∵∠ACE∠D(已知),

∴_____∥______(______________________ )

∵∠ACE∠FEC(已知),

∴______∥______(_ ___ _______)

∵∠AEC∠BOC(已知)

∴_____∥______(___ _____________________)

∵∠BFD∠FOC180°(已知),

∴_____∥______(_____ ____________________)

【答案】CE,DF,同位角相等兩直線平行;EF,AD,內(nèi)錯角相等,兩直線平行;AE,BF,同位角相等,兩直線平行;CE,DF,同旁內(nèi)角互補,兩直線平行.

【解析】

根據(jù)平行線的判定依次進行推理即可得出答案.

解:∵∠ACE=D(已知),

根據(jù)同位角相等兩直線平行,

CEDF

∵∠ACE=FEC,

根據(jù)內(nèi)錯角相等,兩直線平行,

EFAD

∵∠AEC=BOC,

根據(jù)同位角相等,兩直線平行,

AEBF

根據(jù)∠BFD+FOC=180°,

根據(jù)同旁內(nèi)角互補,兩直線平行,

CEDF

故答案為:CEDF,同位角相等兩直線平行;EF,AD,內(nèi)錯角相等,兩直線平行;AE,BF,同位角相等,兩直線平行;CE,DF,同旁內(nèi)角互補,兩直線平行.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點OOE把∠AOC分成兩部分,且∠AOE∶∠EOC25

(1)如圖,若∠BOD70°,求∠BOE

(2)如圖,若OF平分∠BOE,∠BOF=∠AOC10°,求∠EOF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連結(jié)OE.下列結(jié)論:

①∠CAD=30°;②SABCD=AB·AC;③OB=AB;④OE=BC,成立的結(jié)論有______.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】濟南市地鐵1號線于201911日起正式通車,在修建過程中,技術(shù)人員不斷改進技術(shù),提高工作效率,如在打通一條長600米的隧道時,計劃用若干小時完成,在實際工作過程中,每小時打通隧道長度是原計劃的1.2倍,結(jié)果提前2小時完成任務(wù).

1)求原計劃每小時打通隧道多少米?

2)如果按照這個速度下去,后面的360米需要多少小時打通?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

的解x=   

的解x=   

的解x=   

的解x=   

(1)根據(jù)你發(fā)現(xiàn)的規(guī)律直接寫出⑤,⑥個方程及它們的解.

(2)請你用一個含正整數(shù)n的式子表示上述規(guī)律,并求出它的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點D為等腰直角△ABC內(nèi)一點,∠ACB90°,ADBD,∠BAD30°EAD延長線上的一點,且CECA,若點MDE上,且DCDM.則下列結(jié)論中:①∠ADB120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分線AB;④MEBD;正確的有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,點DBC上,且AD=AE.

(1)若∠BAC=90°,BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關(guān)系?(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎在一張紙上畫一條數(shù)軸,并在數(shù)軸上標(biāo)出、、三個點,點表示的數(shù)是,點在原點的右邊且與點相距個單位長度.

)點表示的數(shù)是__________.

)將這張紙對折,此時點與表示的點剛好重合,折痕與數(shù)軸交于點,求點表示的數(shù).

)若點到點和點的距離之和為,求點所表示的數(shù).

)點和點同時從初始位置沿數(shù)軸向左運動,它們的速度分別是每秒個單位長度和每秒個單位長度,運動時間是秒.是否存在的值,使秒后點到原點的距離與點到原點的距離相等?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個數(shù)為( ).

A. 7B. 6C. 5D. 4

查看答案和解析>>

同步練習(xí)冊答案