分析 (1)利用勾股定理計(jì)算出OD,從而得到D點(diǎn)坐標(biāo);
(2)設(shè)OE=t,則DE=15-t,由折疊的性質(zhì)可計(jì)算出OD=9,則利用勾股定理得到92+(15-t)2=t2,然后解方程求出t即可得到E點(diǎn)坐標(biāo);
(3)如圖③,過(guò)點(diǎn)D關(guān)于AC的對(duì)稱點(diǎn)M即可得到△AMC,先利用折疊性質(zhì)得CD=CN,∠AMC=∠ADC=90°,再證明AN=CN,設(shè)BN=m,則CN=AN=15-m,利用勾股定理得到82+m2=(15-m)2,然后解方程求出m即可得到N點(diǎn)坐標(biāo).
解答 解:(1)在RtADC中,∵AD=$\sqrt{1{7}^{2}-{8}^{2}}$=15,
∴D(0,15);
(2)設(shè)OE=t,則DE=15-t,
∵折三角形紙板ADC,使邊CD落在邊AC上,如圖②,
∴OD=17-8=9,
在RtOED中,92+(15-t)2=t2,解得t=$\frac{51}{5}$,
∴E(0,$\frac{51}{5}$);
(3)如圖③,△AMC為所作,
∵三角形紙板ADC沿AC邊翻折,翻折后記為△AMC,
∴CD=CN,∠AMC=∠ADC=90°,
在△ABN和△CMN中
$\left\{\begin{array}{l}{∠ANB=∠CNM}\\{∠ABN=∠CMN}\\{AB=CM}\end{array}\right.$,
∴△ABN≌△CMN,
∴AN=CN,
設(shè)BN=m,則CN=AN=15-m,
在Rt△ABN中,82+m2=(15-m)2,解得m=$\frac{161}{30}$,
∴N(8,$\frac{161}{30}$).
點(diǎn)評(píng) 本題考查了作圖-對(duì)稱軸變換:在畫一個(gè)圖形的軸對(duì)稱圖形時(shí),也是先從確定一些特殊的對(duì)稱點(diǎn)開(kāi)始的,一般的方法是:由已知點(diǎn)出發(fā)向所給直線作垂線,并確定垂足;直線的另一側(cè),以垂足為一端點(diǎn),作一條線段使之等于已知點(diǎn)和垂足之間的線段的長(zhǎng),得到線段的另一端點(diǎn),即為對(duì)稱點(diǎn);連接這些對(duì)稱點(diǎn),就得到原圖形的軸對(duì)稱圖形.也考查了對(duì)稱軸的性質(zhì)和勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com