【題目】平面直角坐標(biāo)系中,直線,點(diǎn),點(diǎn),動(dòng)點(diǎn)在直線上,動(dòng)點(diǎn)軸正半軸上,連接、

1)若點(diǎn),求直線的解析式;

2)如圖,當(dāng)周長(zhǎng)最小時(shí),連接,求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo);

【答案】(1);(2)最小值為;P點(diǎn)坐標(biāo)為.

【解析】

1)設(shè)直線的解析式為,根據(jù)點(diǎn)M、Q的坐標(biāo),利用待定系數(shù)法求出k、b的值即可得答案;(2)作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)連接軸于,交直線,此時(shí)周長(zhǎng)最小,根據(jù)題意可得點(diǎn)的坐標(biāo),即可求出直線的解析式,聯(lián)立y=x,即可求出M點(diǎn)坐標(biāo),點(diǎn),作,作,則,,根據(jù)∠EAF的正弦值可得,根據(jù)垂線段最短可知,、共線時(shí),的值最小,可得,進(jìn)而可得直線AE和MK的解析式,聯(lián)立兩個(gè)解析式即可求出K點(diǎn)坐標(biāo),根據(jù)兩點(diǎn)距離公式即可求出MK和MQ的值,即可得答案.

(1)設(shè)直線的解析式為

則有,

解得

直線的解析式為

(2)如圖中,作點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),作點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)連接軸于,交直線,此時(shí)周長(zhǎng)最。

由題意,,

直線的解析式為

,解得

取點(diǎn),作,作,則,,

,

,

根據(jù)垂線段最短可知,當(dāng)、、共線時(shí),的值最小,

,,

∴直線的解析式為,

設(shè)直線MK的解析式為y=kx+b,

,

∴k=,

把M點(diǎn)坐標(biāo)代入得:=×+b,

解得:b=

直線的解析式為,

當(dāng)y=0時(shí),=0,

解得:x=,

∴P點(diǎn)坐標(biāo)為(,0).

,解得,

,

∴MK==,

MQ==

的最小值.此時(shí)點(diǎn)的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小方與小輝在玩軍棋游戲,他們定義了一種新的規(guī)則,用軍棋中的工兵連長(zhǎng)、地雷比較大小,共有6個(gè)棋子,分別為1個(gè)工兵,2個(gè)連長(zhǎng),3個(gè)地雷游戲規(guī)則如下:①游戲時(shí),將棋反面朝上,兩人隨機(jī)各摸一個(gè)棋子進(jìn)行比賽,先摸者摸出的棋不放回;②工兵地雷,地雷連長(zhǎng),連長(zhǎng)工兵;③相同棋子不分勝負(fù).

1)若小方先摸,則小方摸到排長(zhǎng)的事件是 ;若小方先摸到了連長(zhǎng),小輝在剩余的5個(gè)棋子中隨機(jī)摸一個(gè),則這一輪中小方勝小輝的概率為

2)如果先拿走一個(gè)連長(zhǎng),在剩余的5個(gè)棋子中小方先摸一個(gè)棋子,然后小輝在剩余的4個(gè)棋子中隨機(jī)摸一個(gè),求這一輪中小方獲勝的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象相交于A2,3),B(﹣3,n)兩點(diǎn).

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b的解集;

3)過點(diǎn)A作直線l,若直線l與兩坐標(biāo)軸圍成的三角形面積為8,請(qǐng)直接寫出滿足條件的直線l的條數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+2x+c(a<0)與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,OB=OC=3.

(1)求該拋物線的函數(shù)解析式.

(2)如圖1,連接BC,點(diǎn)D是直線BC上方拋物線上的點(diǎn),連接OD,CD.ODBC于點(diǎn)F,當(dāng)SCOF:SCDF=3:2時(shí),求點(diǎn)D的坐標(biāo).

(3)如圖2,點(diǎn)E的坐標(biāo)為(0,),點(diǎn)P是拋物線上的點(diǎn),連接EB,PB,PE形成的△PBE中,是否存在點(diǎn)P,使∠PBE或∠PEB等于2∠OBE?若存在,請(qǐng)直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家以、兩種原料,利用不同的工藝手法生產(chǎn)出了甲、乙、丙三種袋裝產(chǎn)品,其中,甲產(chǎn)品每袋含千克原料、千克原料;乙產(chǎn)品每袋含千克原料、千克原料;丙產(chǎn)品每袋含有千克原料、千克原料.若丙產(chǎn)品每袋售價(jià)元,則利潤(rùn)率為.某節(jié)慶日,該電商進(jìn)行促銷活動(dòng),將甲、乙、丙各一袋合裝成禮品盒,每購(gòu)買一個(gè)禮品盒可免費(fèi)贈(zèng)送一袋乙產(chǎn)品,這樣即可實(shí)現(xiàn)利潤(rùn)率為,則禮盒售價(jià)為_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=∠C

1)求證:AE與⊙O相切于點(diǎn)A

2)若AEBC,BC2,AC2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,AC3,BC7,點(diǎn)P是邊AC上不與點(diǎn)AC重合的一點(diǎn),作PDBCAB邊于點(diǎn)D

1)如圖1,將APD沿直線AB翻折,得到AP'D,作AEPD.求證:AEED;

2)將APD繞點(diǎn)A順時(shí)針旋轉(zhuǎn),得到AP'D',點(diǎn)P、D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)P'、D'

①如圖2,當(dāng)點(diǎn)D'ABC內(nèi)部時(shí),連接PCD'B,求證:AP'C∽△AD'B;

②如果APPC51,連接DD',且DD'AD,那么請(qǐng)直接寫出點(diǎn)D'到直線BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】電影公司隨機(jī)收集了2000部電影的有關(guān)數(shù)據(jù),經(jīng)分類整理得到如表:

電影類型

第一類

第二類

第三類

第四類

第五類

第六類

電影部數(shù)

140

50

300

200

800

510

好評(píng)率

注:好評(píng)率是指一類電影中獲得好評(píng)的部數(shù)與該類電影的部數(shù)的比值.

如果電影公司從收集的電影中隨機(jī)選取1部,那么抽到的這部電影是獲得好評(píng)的第四類電影的概率是______;

電影公司為了增加投資回報(bào),擬改變投資策略,這將導(dǎo)致不同類型電影的好評(píng)率發(fā)生變化假設(shè)表格中只有兩類電影的好評(píng)率數(shù)據(jù)發(fā)生變化,那么哪類電影的好評(píng)率增加,哪類電影的好評(píng)率減少,可使改變投資策略后總的好評(píng)率達(dá)到最大?

答:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,AB=10cm,BC=8cm,點(diǎn)P從點(diǎn)A沿AC向點(diǎn)C1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C沿CB向點(diǎn)B2cm/s的速度運(yùn)動(dòng)(點(diǎn)Q運(yùn)動(dòng)到點(diǎn)B停止)。則四邊形PABQ的面積y()與運(yùn)動(dòng)時(shí)間x(s)之間的函數(shù)圖象為(

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案