【題目】圖1是一個(gè)高腳杯截面圖,杯體呈拋物線狀(杯體厚度不計(jì)),點(diǎn)是拋物線的頂點(diǎn),,點(diǎn)是的中點(diǎn),當(dāng)高腳杯中裝滿液體時(shí),液面,此時(shí)最大深度(液面到最低點(diǎn)的距離)為,將高腳杯繞點(diǎn)緩緩傾斜倒出部分液體,當(dāng)時(shí)停止,此時(shí)液面為,則液面到平面的距離是________________;此時(shí)杯體內(nèi)液體的最大深度為_____________________.
【答案】
【解析】
作CD的垂線FG,DF繞F旋轉(zhuǎn)后為FP,作PH垂直EF的延長線于H,利用三角函數(shù)和差公式計(jì)算出,從而求得,進(jìn)而求解.
建立直角坐標(biāo)系,在DG下方的拋物線上任取一點(diǎn)Q,過點(diǎn)Q作y軸的平行線交DG于點(diǎn)P,過點(diǎn)Q作DG的垂線QM,垂足為M.求出直線DG及拋物線解析式,利用三角形DGQ的面積作為橋梁可求出QM的最大值,即杯體內(nèi)液體的最大深度.
解:如圖:作CD的垂線FG,DF繞F旋轉(zhuǎn)后為FP,作PH垂直EF的延長線于H,
由題意可知:FG=21,DG=,
所以DF=,
所以
所以=,
所以=
所以PH=FP==,
液面到平面的距離是;
如圖3,建立直角坐標(biāo)系,在DG下方的拋物線上任取一點(diǎn)Q,過點(diǎn)Q作y軸的平行線交DG于點(diǎn)P,過點(diǎn)Q作DG的垂線QM,垂足為M,
由題意可知DG繞F點(diǎn)順時(shí)針旋轉(zhuǎn)后與水平方向平行,所以旋轉(zhuǎn)前DG與水平方向的夾角為,設(shè)直線DG的解析式為y=kx+b,
由題意可知,點(diǎn)D的坐標(biāo)為,
,
所以,
設(shè)拋物線的解析式為,經(jīng)過點(diǎn)D,
所以a=1,
所以,
由得點(diǎn)G的坐標(biāo)為,
設(shè)Q的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,
所以PQ==,
當(dāng)時(shí),PQ有最大值為,
又因?yàn)?/span>=,
所以當(dāng)PQ取最大值時(shí),有最大值=,
=,
又因?yàn)?/span>=,
所以當(dāng)有最大值時(shí),QM有最大值,
,
所以QM=
所以旋轉(zhuǎn)后杯體內(nèi)液體的最大深度為,
故答案是:;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具商場計(jì)劃購進(jìn)某種餐桌和餐椅,已知每張餐椅的進(jìn)價(jià)比每張餐桌的進(jìn)價(jià)便宜110元,餐桌零售價(jià)270元/張,餐椅零售價(jià)70元/張.已知用600元購進(jìn)的餐桌數(shù)量與用160元購進(jìn)的餐椅數(shù)量相同.
(1)求該家具商場計(jì)劃購進(jìn)的餐桌、餐椅的進(jìn)價(jià)分別為多少元?
(2)若該商場購進(jìn)餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計(jì)劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,售價(jià)500元/套,其余餐桌、餐椅以零售方式銷售.請問該商場怎樣進(jìn)貨,才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市購進(jìn)某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來40天的銷售單價(jià)p(元/kg)與時(shí)間 t(天)之間的函數(shù)表達(dá)式為p=t+30;(1≤t≤40,t為整數(shù)),試銷售當(dāng)天(正式銷售前一天)售出400kg,之后每天銷售量比前一天減少5千克;
(1)試求每天銷售利潤W1(元)與時(shí)間t(天)之間的函數(shù)關(guān)系式;
(2)在銷售前20天里,何時(shí)利潤為4320元?
(3)為回饋新老顧客的支持,在實(shí)際銷售中,超市決定每銷售1kg水果就捐贈(zèng)2元利潤給“精準(zhǔn)扶貧”對象.在日銷售量不低于300kg的情況下,何時(shí)超市獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)關(guān)于軸的對稱點(diǎn),點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),當(dāng)是等腰三角形時(shí),值個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李經(jīng)營一個(gè)社區(qū)快遞網(wǎng)點(diǎn),負(fù)責(zé)周邊快件收發(fā),由于疫情原因,到2020年2月12 日網(wǎng)點(diǎn)才可以復(fù)工,而該網(wǎng)點(diǎn)的另外兩名員工因?yàn)檗k理復(fù)工手續(xù),將分別在2月15日和2月26日返崗,工作據(jù)大數(shù)據(jù)顯示,預(yù)計(jì)從復(fù)工之日開始,每日到達(dá)該網(wǎng)點(diǎn)的快件數(shù)量(件)與第天(2月12日為第天)滿足:.已知一位快遞員日均派送快件量為件,通過加班最高可派送件.
前三天小李派送的快件總量為_ 件;
以最高派送量派送快件還有剩余時(shí),則當(dāng)天剩余快件留到第二天優(yōu)先派送,
①到第十天結(jié)束時(shí),滯留的快件共有 件; 到第十四天結(jié)束時(shí),滯留的快件共有__件;
②2月18日后快遞激增爆倉,小李和員工每天加班派送,根據(jù)現(xiàn)有快遞數(shù)量的變化趨勢,從2月19日開始計(jì)算,小李至少要加班幾天才可以不用加班派送.(即小李不加班派送的情況下,快遞點(diǎn)沒有滯留件)
到了3月5日,全國疫情穩(wěn)定,預(yù)計(jì)每日到達(dá)網(wǎng)點(diǎn)的快件數(shù)量將按新趨勢變化,“女神節(jié)”期間(3月6日-9日)日均快件量為件,3月10日起日均快件量穩(wěn)定在件.此時(shí)小李接到快遞總公司新規(guī)定:從3月10日開始,到達(dá)的快件必須當(dāng)天派送完畢,否則將扣除滯留快件滯留費(fèi)元/件天(之前滯留的快件從3月10日0時(shí)開始收取滯留費(fèi))為此,小李想到從市場招聘____名臨時(shí)工幫助派送快遞,若臨時(shí)工基本工資元/天,外加派送費(fèi)元/件臨時(shí)工一天最多可派送快件件,為了將支出降到最低,小李應(yīng)該聘請臨時(shí)工幾天,派送快件共多少件?此時(shí)最低支出多少元錢?直接寫出你的答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)P(m,n).給出下列結(jié)論:①2a+c<0;②若(﹣,y1),(﹣,y2),(,y3)在拋物線上,則y1>y2>y3;③關(guān)于x的方程ax2+bx+k=0有實(shí)數(shù)解,則k>c﹣n;④當(dāng)n=﹣時(shí),△ABP為等腰直角三角形.其中正確結(jié)論是______(填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對任意一個(gè)兩位數(shù)m,如果m等于兩個(gè)正整數(shù)的平方和,那么稱這個(gè)兩位數(shù)m為“平方和數(shù)”,若m=a2+b2(a、b為正整數(shù)),記A(m)=ab.例如:29=22+52,29就是一個(gè)“平方和數(shù)”,則A(29)=2×5=10.
(1)判斷25是否是“平方和數(shù)”,若是,請計(jì)算A(25)的值;若不是,請說明理由;
(2)若k是一個(gè)“平方和數(shù)”,且A(k)=,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解疫情對精神負(fù)荷造成的影響,某機(jī)構(gòu)分別在一線城市和三線城市的志愿者中隨機(jī)選取了50人參加LES測試,根據(jù)志愿者的答題情況計(jì)算出LES得分,并對得分進(jìn)行整理,描述和分析,部分信息如下:
一、三線城市志愿者得分統(tǒng)計(jì)表
城市 | 中位數(shù) | 平均數(shù) |
一線城市 | a | 17.6 |
三線城市 | 14 | 17.2 |
注:一線城市在14<x≤20中的得分是:15,15,16,17,17,17,17,18,18,20.
根據(jù)以上信息,解答下列問題:
(1)表中a的值為 ;
(2)得分越低反映個(gè)體承受的精神壓力越小,排名越靠前,在這次調(diào)查中,一線城市的志愿者甲和三線城市的志愿者乙的得分均為15分,請判斷甲、乙在各自城市選取的志愿者中得分排名誰更靠前,并說明理由;
(3)如果得分超過平均數(shù)就需要進(jìn)行心理干預(yù),請估計(jì)一線城市全部2000名志愿者中有多少人需要進(jìn)行心理干預(yù)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com