【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x﹣m)2+n的頂點(diǎn)在線段AB上運(yùn)動(dòng)(拋物線隨頂點(diǎn)一起平移),與x軸交于C、D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)最大值為( )
A.﹣3
B.1
C.5
D.8
【答案】D
【解析】解:當(dāng)點(diǎn)C橫坐標(biāo)為﹣3時(shí),拋物線頂點(diǎn)為A(1,4),對(duì)稱軸為x=1,此時(shí)D點(diǎn)橫坐標(biāo)為5,則CD=8;
當(dāng)拋物線頂點(diǎn)為B(4,4)時(shí),拋物線對(duì)稱軸為x=4,且CD=8,故C(0,0),D(8,0);
由于此時(shí)D點(diǎn)橫坐標(biāo)最大,
故點(diǎn)D的橫坐標(biāo)最大值為8;
故選:D.
當(dāng)C點(diǎn)橫坐標(biāo)最小時(shí),拋物線頂點(diǎn)必為A(1,4),根據(jù)此時(shí)拋物線的對(duì)稱軸,可判斷出CD間的距離;
當(dāng)D點(diǎn)橫坐標(biāo)最大時(shí),拋物線頂點(diǎn)為B(4,4),再根據(jù)此時(shí)拋物線的對(duì)稱軸及CD的長(zhǎng),可判斷出D點(diǎn)橫坐標(biāo)最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)B(﹣1,0)和y軸上一動(dòng)點(diǎn)A(0,a),其中a>0,以A點(diǎn)為直角頂點(diǎn)在第二象限內(nèi)作等腰直角△ABC,設(shè)點(diǎn)C的坐標(biāo)為(c,d).
(1)當(dāng)a=2時(shí),則C點(diǎn)的坐標(biāo)為( , );
(2)動(dòng)點(diǎn)A在運(yùn)動(dòng)的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請(qǐng)求出其值;若發(fā)生變化,請(qǐng)說明理由.
(3)當(dāng)a=2時(shí),在坐標(biāo)平面內(nèi)是否存在一點(diǎn)P(不與點(diǎn)C重合),使△PAB與△ABC全等?若存在,直接寫出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.如圖,以等腰直角△ABC 的直角邊 AC 作等邊△ACD,CE⊥AD 于 E, BD、CE 交于點(diǎn) F.
(1)求∠DFE 的度數(shù);
(2)求證:AB=2DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤(rùn)20元,每件B種紀(jì)念品可獲利潤(rùn)30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中小方格邊長(zhǎng)為1,請(qǐng)你根據(jù)所學(xué)的知識(shí)解決下面問題.
(1)求網(wǎng)格圖中△ABC的面積.
(2)判斷△ABC是什么形狀?并所明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為(4,0),C點(diǎn)的坐標(biāo)為(0,5),點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O﹣C﹣B﹣A﹣O的路線移動(dòng)(即:沿著長(zhǎng)方形移動(dòng)一周)
(1)寫出點(diǎn)B的坐標(biāo)( , );
(2)當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo);
(3)在移動(dòng)過程中,當(dāng)點(diǎn)P到x軸距離為4個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課本例題
已知:如圖,AD是的角平分線,,,垂足分別為E、F.求證:AD垂直平分EF.
小明做法
證明:因?yàn)?/span>AD是的角平分線,,,所以
理由是:“角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等”.
因?yàn)?/span>,
所以AD垂直平分EF.
理由是:“到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上”.
老師觀點(diǎn)
老師說:小明的做法是錯(cuò)誤的
請(qǐng)你解決
指出小明做法的錯(cuò)誤;
正確、完整的解決這道題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD,EF交于點(diǎn)O,OG平分∠BOF,且CD⊥EF,∠AOE=64°,求∠AOF,∠DOG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為線段上一動(dòng)點(diǎn),分別過點(diǎn)作,,連接.已知,設(shè).
(1)用含的代數(shù)式表示的值;
(2)探究:當(dāng)點(diǎn)滿足什么條件時(shí),的值最小?最小值是多少?
(3)根據(jù)(2)中的結(jié)論,請(qǐng)構(gòu)造圖形求代數(shù)式的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com