【題目】根據(jù)要求回答問(wèn)題:
(1)發(fā)現(xiàn)
如圖1,直線l1∥l2 , l1和l2的距離為d,點(diǎn)P在l1上,點(diǎn)Q在l2上,連接PQ,填空:PQ長(zhǎng)度的最小值為.
(2)應(yīng)用
如圖2,在四邊形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,點(diǎn)M在線段AD上,AM=3MD,點(diǎn)N在直線BC上,連接MN,求MN長(zhǎng)度的最小值
(3)拓展
如圖3,在四邊形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,點(diǎn)M在線段AD上任意一點(diǎn),連接MC并延長(zhǎng)到點(diǎn)E,使MC=CE,以MB和ME為邊作平行四邊形MBNE,請(qǐng)直接寫(xiě)出線段MN長(zhǎng)度的最小值
【答案】
(1)d
(2)解:如圖2,
∵AD=4,AM=3DM,
∴AM=3,DM=1,
延長(zhǎng)AD、BC交于E,
當(dāng)MN⊥BC時(shí),MN的值最小,
∵DC∥AB,
∴△EDC∽△EAB,
∴ ,
∴ ,
∴ED=2,
∴ED=DC=2,
∴△EDC是等腰直角三角形,
∴∠E=45°,
∴△EMN是等腰直角三角形,
∵EM=3,
∴MN= =
(3)解:當(dāng)MN⊥AD時(shí),MN的長(zhǎng)最小,
∴MN∥DC∥AB,
∴∠DCM=∠CMN=∠MNB=∠NBH,
設(shè)MN與BC相交于點(diǎn)G,
∵M(jìn)E∥BN,MC=CE,
∴ ,
∴G是BC上一定點(diǎn),
作NH⊥AB,交AB的延長(zhǎng)線于H,
∵∠D=∠H=90°,
∴Rt△MDC∽R(shí)t△NHB,
即 = ,
∴BH=2DC=4,
∴AH=AB+BH=6+4=10,
∴當(dāng)MN⊥AD時(shí),MN的長(zhǎng)最小,即為10;
則線段MN長(zhǎng)度的最小值為10
【解析】解:(1)∵直線l1∥l2,l1和l2的距離為d,
∴PQ長(zhǎng)度的最小值為d;
所以答案是:d;
【考點(diǎn)精析】本題主要考查了相似三角形的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握測(cè)高:測(cè)量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長(zhǎng)成比例”的原理解決;測(cè)距:測(cè)量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C1的兩邊在坐標(biāo)軸上,以它的對(duì)角線OB1為邊作正方形OB1B2C2 , 再以正方形OB1B2C2的對(duì)角線OB2為邊作正方形OB2B3C3 , 以此類(lèi)推…則正方形OB2016B2017C2017的頂點(diǎn)B2017的坐標(biāo)是( )
A.(21008 , 0)
B.(21008 , 21008)
C.(0,21008)
D.(21007 , 21007)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C這三個(gè)點(diǎn).
回答:
(1)A、B、C這三個(gè)點(diǎn)表示的數(shù)各是多少?
(2)A、B兩點(diǎn)間的距離是多少?A、C兩點(diǎn)間的距離是多少?
(3)若將點(diǎn)A向右移動(dòng)5個(gè)單位后,則A、B、C這三個(gè)點(diǎn)所表示的數(shù)誰(shuí)最大?
(4)應(yīng)怎樣移動(dòng)點(diǎn)B的位置,使點(diǎn)B到點(diǎn)A和點(diǎn)C的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,邊長(zhǎng)為4,E為AD延長(zhǎng)線上一點(diǎn),DE=x(0<x<4),在AE上取一點(diǎn)M,連接CM,將△CME沿CM對(duì)折,若點(diǎn)E恰落在線段AB上的點(diǎn)F處,則AM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠生產(chǎn)一種工具,據(jù)市場(chǎng)調(diào)查,若按每個(gè)工具280元銷(xiāo)售時(shí),每月可銷(xiāo)售300個(gè),若銷(xiāo)售單價(jià)每降低1元,每月可多售出2個(gè),據(jù)統(tǒng)計(jì),每個(gè)工具的固定成本Q(元)與月銷(xiāo)售y(個(gè))滿足如下關(guān)系:
月銷(xiāo)量y(個(gè)) | 100 | 160 | 240 | 320 |
每個(gè)工具的固定成本Q(元) | 96 | 60 | 40 | 30 |
(1)寫(xiě)出月產(chǎn)銷(xiāo)量y(個(gè))與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求每個(gè)玩具的固定成本Q(元)與月產(chǎn)銷(xiāo)量y(個(gè))之間的函數(shù)關(guān)系式;
(3)若該廠這種玩具的月產(chǎn)銷(xiāo)量不超過(guò)400個(gè),則每個(gè)玩具的固定成本至少為多少元?銷(xiāo)售單價(jià)最低為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某的士的起步價(jià)為10元(可以坐3千米的路程),若超過(guò)3千米,則超出部分每千米另外加收2 元.
(1)小明坐該的士走了x千米的路程,應(yīng)該付費(fèi)多少元?
(2)小芳坐該的士走了18千米的路程,應(yīng)該付費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架梯子AC長(zhǎng)2.5米,斜靠在一面墻上,梯子底端離墻0.7米.
(1)這個(gè)梯子的頂端距地面有多高?
(2)如果梯子的頂端下滑了0.4米到A′,那么梯子的底端在水平方向滑動(dòng)了幾米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.
(1)若|a+c|+|b|=2,求b的值;
(2)用“>”從大到小把a(bǔ),b,﹣b,c連接起來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績(jī)?nèi)鐖D所示.
根據(jù)圖中信息,回答下列問(wèn)題:
(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;
(2)分別計(jì)算甲、乙成績(jī)的方差,并從計(jì)算結(jié)果來(lái)分析,你認(rèn)為哪位運(yùn)動(dòng)員的射擊成績(jī)更穩(wěn)定?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com