【題目】某網(wǎng)店打出促銷廣告:最潮新款服裝30件,每件售價300元.若一次性購買不超過10件時,售價不變;若一次性購買超過10件時,每多買1件,所買的每件服裝的售價均降低3元.已知該服裝成本是每件200元,設(shè)顧客一次性購買服裝x件時,該網(wǎng)店從中獲利y元.

(1)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)顧客一次性購買多少件時,該網(wǎng)店從中獲利最多?

【答案】1)、y=;(2)、22.

【解析】試題分析:(1)根據(jù)題意可得出銷量乘以每臺利潤進而得出總利潤,進而得出答案;

2)根據(jù)銷量乘以每臺利潤進而得出總利潤,即可求出即可.

試題解析:(1,

2)在0≤x≤10時,y=100x,當(dāng)x=10時,y有最大值1000;

10x≤30時,y=-3x2+130x,

當(dāng)x=21時,y取得最大值,

∵x為整數(shù),根據(jù)拋物線的對稱性得x=22時,y有最大值1408

∵14081000,

顧客一次購買22件時,該網(wǎng)站從中獲利最多.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)全等多邊形的定義,我們把四個角,四條邊分別相等的兩個凸四邊形叫做全等四邊形,記作:四邊形ABCD≌四邊形A1B1C1D1

1)若四邊形ABCD≌四邊形A1B1C1D1,已知AB3,BC4,ADCD5B90,D 60,則A1D1 B1 , A1C1 (直接寫出答案);

2)如圖 1,四邊形 ABEF≌四邊形CBED,連接AD BE于點O,連接F,求證:AOBFOE;

3)如圖 2,若ABA1B1,BCB1C1,CDC1D1,ADA1D1,BB1,求證:四邊形ABCD≌四邊形A1B1C1D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CBy,y軸負(fù)半軸于B(0,b),(a-3)2+|b+4|=0,S四邊形AOBC=16.

(1)求C點坐標(biāo);

(2)如圖2,設(shè)D為線段OB上一動點,當(dāng)ADAC,ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù).

(3)如圖3,當(dāng)D點在線段OB上運動時,DMADBCM,BMD、DAO的平分線交于N,D點在運動過程中,N的大小是否變化?若不變,求出其值,若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG//DBCB的延長線于G

1)求證:△ADE≌△CBF;

2)若四邊形BEDF是菱形,求證四邊形AGBD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,斜坡AP的坡度為1:24,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°求:

1坡頂A到地面PQ的距離;

2古塔BC的高度結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈097,cos76°≈024,tan76°≈401

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,A﹣2,0),B0,2),EF分別為OA,OB的中點.若正方形OEDF繞點O順時針旋轉(zhuǎn)得正方形OEDF,記旋轉(zhuǎn)角為α

1)如圖當(dāng)α=90°,AE,BF的長;

2)如圖,當(dāng)α=135°求證AE′=BF,AE′⊥BF;

3)若直線AE與直線BF相交于點P求點P的縱坐標(biāo)的最大值(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,厘米,厘米,點的中點,如果點在線段上以厘米/秒的速度由點向點運動,同時點在線段上由點向點運動.當(dāng)一個點停止運動時,另一個點也隨之停止運動.

(1)用含有的代數(shù)式表示,則_______厘米;

(2)若點的運動速度與點的運動速度相等,經(jīng)過秒后,是否全等,請說明理由;

(3)若點的運動速度與點的運動速度不相等,那么當(dāng)點的運動速度為多少時,能夠使全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線y=2x+3x軸交于點A,與直線y=x交于點B

1)點A坐標(biāo)為   ,∠AOB=   ;

2)求SOAB的值;

3)動點E從原點O出發(fā),以每秒1個單位長度的速度沿著O→A的路線向終點A勻速運動,過點EEFx軸交直線y=x于點F,再以EF為邊向右作正方形EFGH.設(shè)運動t秒時,正方形EFGHOAB重疊部分的面積為S.求:St之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個計算器,計算時只能顯示1.41421356237十三位(包括小數(shù)點),現(xiàn)在想知道7后面的數(shù)字是什么,可以在這個計算器中計算下面哪一個值(

A. 10 B. 10-1 C. 100 D. -1

查看答案和解析>>

同步練習(xí)冊答案