【題目】閱讀理解:
我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個矩形發(fā)生變形后成為一個平行四邊形,設這個平行四邊形相鄰兩個內角中較小的一個內角為α,我們把的值叫做這個平行四邊形的變形度.
(1)若矩形發(fā)生變形后的平行四邊形有一個內角是120度,則這個平行四邊形的變形是 .
猜想證明:
(2)設矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2, 之間的數(shù)量關系,并說明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點,且AB2=AEAD,這個矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對應點,連接B1E1,B1D1,若矩形ABCD的面積為4 (m>0),平行四邊形A1B1C1D1的面積為2(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).
【答案】(1);(2),理由見解析;(3)∠A1E1B1+∠A1D1B1=30°.
【解析】解:(1);
(2)=,
理由:如圖1,
設矩形的長和寬分別為a,b,變形后的平行四邊形的高為h,
∴S1=ab,S2=ah,∴==,
∵sinα= ∴=,∴=;
(3)∵AB2=AEAD,
∴A1B12=A1E1A1D1,即=,
∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,
∴∠A1B1E1=∠A1D1B1,
∵A1D1∥B1C1,
∴∠A1E1B1=∠C1B1E1,
∴∠A1E1B1+∠A1D1B1=∠C1E1B1+∠A1B1E1=∠A1B1C1,
由(2)知=可知==2,
∴sin∠A1B1C1=,
∴∠A1B1C1=30°,
∴∠A1E1B1+∠A1D1B1=30°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知以點A(0,1)、C(1,0)為頂點的△ABC中,∠BAC=60°,∠ACB=90°,在坐標系內有一動點P(不與A重合),以P、B、C為頂點的三角形和△ABC全等,則P點坐標為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高臺縣為加快新農村建設,建設美麗鄉(xiāng)村,對A、B兩類村莊進行了全面改建.根據(jù)預算,建設一個A類美麗村莊和一個B類美麗村莊共需資金300萬元;巷道鎮(zhèn)建設了2個A類村莊和5個B類村莊共投入資金1140萬元.
(1)建設一個A類美麗村莊和一個B類美麗村莊所需的資金分別是多少萬元?
(2)駱駝城鎮(zhèn)改建3個A類美麗村莊和6個B類美麗村莊共需資金多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),下列結論:
①4ac<b2;
②方程ax2+bx+c=0的兩個根是x1=-1,x2=3;
③3a+c>0;
④當y>0時,x的取值范圍是-1≤x<3 ;
⑤當x<0時,y隨x增大而增大;
其中正確的個數(shù)是 ( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:如圖1,在△ABC中,BE是AC邊上的中線, D是BC邊上的一點,CD:BD=1:2,AD與BE相交于點P,求的值.小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構造△AEF,經過推理和計算能夠使問題得到解決(如圖2).
(1)的值為 ;
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .
求 的值;
若CD=2,求BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下列各組數(shù)據(jù)為邊長,可以構成等腰三角形的是( )
A.1cm、2cm、3cmB.3cm、 3cm、 4cm
C.1cm、3cm、1cmD.2cm、 2cm、 4cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點A,B的坐標分別為(5,0), (2,6),點D為AB上一點,且BD=2AD,雙曲線y=(k>0)經過點D,交BC于點E.
(1)求雙曲線的解析式;
(2)求四邊形ODBE的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com