【題目】已知拋物線C1:y=﹣x2+bx+3與x軸的一個(gè)交點(diǎn)為(1,0),頂點(diǎn)記為A,拋物線C2與拋物線C1關(guān)于y軸對稱.
(1)求拋物線C2的函數(shù)表達(dá)式;
(2)若拋物線C2與x軸正半軸的交點(diǎn)記作B,在x軸上是否存在一點(diǎn)P,使△PAB為等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)y=﹣x2+2x+3;(2) 點(diǎn)P坐標(biāo)為(﹣5,0)或(3﹣4,0)或(3+4,0)或(﹣1,0)
【解析】
(1)把點(diǎn)(1,0)代入y=﹣x2+bx+3,解得b=﹣2,所以拋物線C1:y=﹣x2﹣2x+3,由拋物線C2與拋物線C1關(guān)于y軸對稱.所以拋物線C2的函數(shù)表達(dá)式y=﹣(x﹣1)2+4;
(2)令y=0,則﹣x2+2x+3=0,解得x=﹣1或3,所以B(3,0),OB=3,A(﹣1,4),AB=4,①當(dāng)AP=AB=4時(shí),PB=8,P1(﹣5,0)②當(dāng)BP=AB=4時(shí),P2(3﹣4,0),P3(3+4,0)③當(dāng)AP=BP時(shí),點(diǎn)P在AB垂直平分線上,PA=PB=4,P4(﹣1,0).
解:(1)把點(diǎn)(1,0)代入y=﹣x2+bx+3,
﹣1+b+3=0,
解得b=﹣2
∴拋物線C1:y=﹣x2﹣2x+3,
∴拋物線C1頂點(diǎn)坐標(biāo)A(﹣1,4),與y軸交點(diǎn)(0,3),
∵拋物線C2與拋物線C1關(guān)于y軸對稱.
∴拋物線C2的函數(shù)表達(dá)式y=﹣(x﹣1)2+4=﹣x2+2x+3;
(2)令y=0,則﹣x2+2x+3=0,
解得x=﹣1或3,
∴B(3,0),OB=3,
∵A(﹣1,4),
∴AB=4,
①當(dāng)AP=AB=4時(shí),PB=8,
∴P1(﹣5,0)
②當(dāng)BP=AB=4時(shí),
P2(3﹣4,0),P3(3+4,0)
③當(dāng)AP=BP時(shí),點(diǎn)P在AB垂直平分線上,
∴PA=PB=4,
∴P4(﹣1,0)
綜上,點(diǎn)P坐標(biāo)為(﹣5,0)或(3﹣4,0)或(3+4,0)或(﹣1,0)時(shí),△PAB為等腰三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)在函數(shù)的圖象上,,邊在軸上,點(diǎn)為斜邊的中點(diǎn),連續(xù)并延長交軸于點(diǎn),連結(jié),若的面積為,則的值為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某型號新能源純電動汽車充滿電后,蓄電池剩余電量(千瓦時(shí))關(guān)于已行駛路程 (千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出蓄電池剩余電量為35千瓦時(shí)時(shí)汽車已行駛的路程,當(dāng)時(shí),求1千瓦時(shí)的電量汽車能行駛的路程;
(2)當(dāng)時(shí)求關(guān)于的函數(shù)表達(dá)式,并計(jì)算當(dāng)汽車已行駛180千米時(shí),蓄電池的剩余電量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),交y軸于C(0,2);
(1)求二次函數(shù)的解析式;
(2)連接AC,在直線AC上方的拋物線上是否存在點(diǎn)N,使△NAC的面積最大,若存在,求出這個(gè)最大值及此時(shí)點(diǎn)N的坐標(biāo),若不存在,說明理由.
(3)若點(diǎn)M在x軸上,是否存在點(diǎn)M,使以B、C、M為頂點(diǎn)的三角形是等腰三角形,若存在,直接寫出點(diǎn)M的坐標(biāo);若不存在,說明理由.
(4)若P為拋物線上一點(diǎn),過P作PQ⊥BC于Q,在y軸左側(cè)的拋物線是否存在點(diǎn)P使△CPQ∽△BCO(點(diǎn)C與點(diǎn)B對應(yīng)),若存在,求出點(diǎn)P的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華和小康想用標(biāo)桿來測量河對岸的樹AB的高,兩人在確保無安全隱患的情況下,小康在F處豎立了一根標(biāo)桿EF,小華走到C處時(shí),站立在C處看到標(biāo)桿頂端E和樹的頂端B在一條直線上,此時(shí)測得小華的眼睛到地面的距離DC=16米;然后,小華在C處蹲下,小康平移標(biāo)桿到H處時(shí),小華恰好看到標(biāo)桿頂端G和樹的頂端B在一條直線上,此時(shí)測得小華的眼睛到地面的距離MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,點(diǎn)C、F、H、A在一條直線上,點(diǎn)M在CD上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,根據(jù)以上測量過程及測量數(shù)據(jù),請你求出樹AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:我們學(xué)習(xí)等邊三角形時(shí)得到直角三角形的一個(gè)性質(zhì):在直角三角形中,如果一個(gè)銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結(jié)論:小明同學(xué)對以上結(jié)論作了進(jìn)一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結(jié)論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關(guān)系為 .
(2)如圖2,點(diǎn)D是邊CB上任意一點(diǎn),連接AD,作等邊△ADE,且點(diǎn)E在∠ACB的內(nèi)部,連接BE.試探究線段BE與DE之間的數(shù)量關(guān)系,寫出你的猜想并加以證明.
(3)當(dāng)點(diǎn)D為邊CB延長線上任意一點(diǎn)時(shí),在(2)條件的基礎(chǔ)上,線段BE與DE之間存在怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論 .
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等邊△ABC,當(dāng)C點(diǎn)在第一象限內(nèi),且B(2,0)時(shí),求C點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點(diǎn)E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點(diǎn)G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價(jià)每增加2元,每天銷售量會減少1件.設(shè)銷售單價(jià)增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達(dá)式;
(2)當(dāng)為多少時(shí),超市每天銷售這種玩具可獲利潤2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時(shí)最大,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com