【題目】在平面直角坐標(biāo)系中,點(diǎn),,點(diǎn)C為x軸正半軸上一動(dòng)點(diǎn),過(guò)點(diǎn)A作交y軸于點(diǎn)E.
如圖,若點(diǎn)C的坐標(biāo)為,試求點(diǎn)E的坐標(biāo);
如圖,若點(diǎn)C在x軸正半軸上運(yùn)動(dòng),且, 其它條件不變,連接DO,求證:OD平分
若點(diǎn)C在x軸正半軸上運(yùn)動(dòng),當(dāng)時(shí),求的度數(shù).
【答案】(1)點(diǎn)E的坐標(biāo)為(0,2);(2)詳見(jiàn)解析;(3)∠OCB=60°.
【解析】
(1)先根據(jù)AAS判定△AOE≌△BOC,得出OE=OC,再根據(jù)點(diǎn)C的坐標(biāo)為(2,0),得到OC=2=OE,進(jìn)而得到點(diǎn)E的坐標(biāo);
(2)先過(guò)點(diǎn)O作OM⊥AD于點(diǎn)M,作ON⊥BC于點(diǎn)N,根據(jù)△AOE≌△BOC,得到S△AOE=S△BOC,且AE=BC,再根據(jù)OM⊥AE,ON⊥BC,得出OM=ON,進(jìn)而得到OD平分∠ADC;
(3)在DA上截取DP=DC,連接OP,根據(jù)SAS判定△OPD≌△OCD,再根據(jù)三角形外角性質(zhì)以及三角形內(nèi)角和定理,求得∠PAO=30°,進(jìn)而得到∠OCB=60°.
(1)如圖①,∵AD⊥BC,BO⊥AO,
∴∠AOE=∠BDE,
又∵∠AEO=∠BED,
∴∠OAE=∠OBC,
∵A(-3,0),B(0,3),
∴OA=OB=3,
∴△AOE≌△BOC,
∴OE=OC,
又∵點(diǎn)C的坐標(biāo)為(2,0),
∴OC=2=OE,
∴點(diǎn)E的坐標(biāo)為(0,2);
(2)如圖②,過(guò)點(diǎn)O作OM⊥AD于點(diǎn)M,作ON⊥BC于點(diǎn)N,
∵△AOE≌△BOC,
∴S△AOE=S△BOC,且AE=BC,
∵OM⊥AE,ON⊥BC,
∴OM=ON,
∴OD平分∠ADC;
(3)如所示,在DA上截取DP=DC,連接OP,
∵∠PDO=∠CDO,OD=OD,
∴△OPD≌△OCD,
∴OC=OP,∠OPD=∠OCD,
∵AD-CD=OC,
∴AD-DP=OP,即AP=OP,
∴∠PAO=∠POA,
∴∠OPD=∠PAO+∠POA=2∠PAO=∠OCB,
又∵∠PAO+∠OCD=90°,
∴3∠PAO=90°,
∴∠PAO=30°,
∴∠OCB=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:p為實(shí)數(shù).
p | k | q |
… | … | … |
3 | 16×3+26 | 2×2×6 |
4 | 16×4+26 | 2×3×7 |
5 | 16×5+26 | 2×4×8 |
6 | 16×6+26 | 2×5×9 |
7 | 16×7+26 | 2×6×10 |
… | … | … |
根據(jù)上表中的規(guī)律,回答下列問(wèn)題:
(1)當(dāng)p為何值時(shí),k=38?
(2)當(dāng)p為何值時(shí),k與q的值相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:,OE平分,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)、B、C不與點(diǎn)O重合,連接AC交射線OE于點(diǎn)設(shè).
如圖1,若,則
的度數(shù)是______;
當(dāng)時(shí),______;當(dāng)時(shí),______.
如圖2,若,則是否存在這樣的x的值,使得中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:①HE=HF;②EC平分∠DCH;③線段BF的取值范圍為3≤BF≤4;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=2.以上結(jié)論中,你認(rèn)為正確的有( )個(gè).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,E,F,G,H分別為邊AB,BC,CD,DA的中點(diǎn),若AB=2,AD=4,則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=-的圖象的兩個(gè)分支分布在第_________象限,在每個(gè)象限內(nèi),y隨x的增大而_________,函數(shù)y=的圖象的兩個(gè)分支分布在第_________象限,在每一個(gè)象限內(nèi),y隨x的減小而_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC.
(1)尺規(guī)作圖:作∠ABC的平分線,交AC于點(diǎn)D(保留作圖痕跡,不寫(xiě)作法);
(2)E是底邊BC的延長(zhǎng)線上一點(diǎn),M是BE的中點(diǎn),連接DE,DM,若CE=CD,求證:DM⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)今年2月份的營(yíng)業(yè)額為400萬(wàn)元,3月份的營(yíng)業(yè)額比2月份增加10%,5月份的營(yíng)業(yè)額達(dá)到633.6萬(wàn)元.求3月份到5月份營(yíng)業(yè)額的月平均增長(zhǎng)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在長(zhǎng)方形內(nèi)點(diǎn)F處,且DF=6.
(1)試說(shuō)明:△ADF是直角三角形;
(2)求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com