科目: 來源: 題型:
我市某工藝廠為配合奧運會,設(shè)計了一款成本為20元∕件的工藝品投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件) | …… | 30 | 40 | 50 | 60 | …… |
每天銷售量y(件) | …… | 500 | 400 | 300 | 200 | …… |
(1)把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?
分析 (1)從表格中的數(shù)據(jù)我們可以看出當(dāng)x增加10時,對應(yīng)y的值減小100,所以y與x之間可能是一次函數(shù)的關(guān)系,我們可以根據(jù)圖象發(fā)現(xiàn)這些點在一條直線上,所以y與x之間是一次函數(shù)的關(guān)系,然后設(shè)出一次函數(shù)關(guān)系式,求出其關(guān)系式.
(2)利用二次函數(shù)的知識求最大值.
查看答案和解析>>
科目: 來源: 題型:
商場對某種商品進(jìn)行市場調(diào)查,1至6月份該種商品的銷售情況如下:
①銷售成本p(元/千克)與銷售月份x的關(guān)系如圖所示 :
②銷售收入q(元/千克)與銷售月份x滿足
q=-x+15;
③銷售量m(千克)與銷售月份x滿足
m=100x+200;
試解決以下問題:
(1)根據(jù)圖形,求p與x之間的函數(shù)關(guān)系式;
(2)求該種商品每月的銷售利潤y(元)與銷售月份x的函數(shù)關(guān)系式,并求出哪個月的銷售利潤最大?
查看答案和解析>>
科目: 來源: 題型:
如圖,閱讀對話,解答問題.
(1)試用樹形圖或列表法寫出滿足關(guān)于x的方程x2+px+q=0的所有等可能結(jié)果;
(2)求(1)中方程有實數(shù)根的概率.
查看答案和解析>>
科目: 來源: 題型:
某賽季甲、乙兩名籃球運動員12場比賽得分情況用圖表示如下:
對這兩名運動員的成績進(jìn)行比較,下列四個結(jié)論中,不正確的是 ( )
A.甲運動員得分的極差大于乙運動員得分的極差
B.甲運動員得分的中位數(shù)大于乙運動員得分的中位數(shù)
C.甲運動員的得分平均數(shù)大于乙運動員的得分平均數(shù)
D.甲運動員的成績比乙運動員的成績穩(wěn)定
查看答案和解析>>
科目: 來源: 題型:
一分鐘投籃測試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學(xué)的一次測試成績?nèi)缦拢?/p>
成績(分) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組(人) | 1 | 2 | 5 | 2 | 1 | 4 |
乙組(人) | 1 | 1 | 4 | 5 | 2 | 2 |
(1)請你根據(jù)上述統(tǒng)計數(shù)據(jù),把下面的圖和表補充完整;
一分鐘投籃成績統(tǒng)計分析表:
統(tǒng)計量 | 平均分 | 方差 | 中位數(shù) | 合格率 | 優(yōu)秀率 |
甲組 |
| 2.56 | 6 | 80.0% | 26.7% |
乙組 | 6.8 | 1.76 |
| 86.7% | 13.3% |
(2)下面是小明和小聰?shù)囊欢螌υ,請你根?jù)(1)中的表,寫出兩條支持小聰?shù)挠^點的理由.
查看答案和解析>>
科目: 來源: 題型:
某校學(xué)生來自甲、乙、丙三個地區(qū),其人數(shù)比為2∶3∶5,如圖所示的扇形圖表示上述分布情況.已知來自甲地區(qū)的為180人,則下列說法不正確的是 ( )
A.扇形甲的圓心角是72°
B.學(xué)生的總?cè)藬?shù)是 900人
C.丙地區(qū)的人數(shù)比乙地區(qū)的人數(shù)多180人
D.甲地區(qū)的人數(shù)比丙地區(qū)的人數(shù)少180人
查看答案和解析>>
科目: 來源: 題型:
如圖,在△ABC中,AB=AC=10 cm,BC=16 cm,DE=4 cm.動線段DE(端點D從點B開始)沿BC邊以1 cm/s的速度向點C運動,當(dāng)端點E到達(dá)點C時運動停止.過點E作EF∥AC交AB于點F(當(dāng)點E與點C重合時,EF與CA重合),連接DF,設(shè)運動的時間為t秒(t≥0).
(1) 直接寫出用含t的代數(shù)式表示線段BE、EF的長;
(2) 在這個運動過程中,△DEF能否為等腰三角形?若能,請求出t的值;若不能,請說明理由;
(3) 設(shè)M、N分別是DF、EF的中點,求整個運動過程中,MN所掃過的面積.
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線:y=-2x+b (b≥0)的位置隨b的不同取值而變化.
(1)已知⊙M的圓心坐標(biāo)為(4,2),半徑為2.
當(dāng)b=________時,直線:y=-2x+b (b≥0)經(jīng)過圓心M:
當(dāng)b=________時,直線:y=-2x+b(b≥0)與OM相切:
(2)若把⊙M換成矩形ABCD,其三個頂點坐標(biāo)分別為:A(2,0)、B(6,0)、C(6,2).設(shè)直線掃過矩形ABCD的面積為S,當(dāng)b由小到大變化時,請求出S與b的函數(shù)關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點A、B分別落在坐標(biāo)軸上.O為原點,點A的坐標(biāo)為(6,0),點B的坐標(biāo)為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒個單位的速度運動.當(dāng)一個動點到達(dá)終點時,另一個動點也隨之停止運動,設(shè)動點M、N運動的時間為t秒(t>0).
(1)當(dāng)t=3秒時.直接寫出點N的坐標(biāo),并求出經(jīng)過O、A、N三點的拋物線的解析式;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當(dāng)t為何值時,△MNA是一個等腰三角形?
查看答案和解析>>
科目: 來源: 題型:
如圖,矩形OABC的兩條邊在坐標(biāo)軸上,OA=1,OC=2,現(xiàn)將此矩形向右平移,每次平移1個單位,若第1次平移得到的矩形的邊與反比例函數(shù)圖象有兩個交點,它們的縱坐標(biāo)之差的絕對值為0.6,則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點的縱坐標(biāo)之差的絕對值為________(用含n的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com