科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,AB=AC=10,線段BC在軸上,BC=12,點B的坐標為(﹣3,0),線段AB交y軸于點E,過A作AD⊥BC于D,動點P從原點出發(fā),以每秒3個單位的速度沿x軸向右運動,設運動的時間為t秒.
(1)點E的坐標為( , );
(2)當△BPE是等腰三角形時,求t的值;
(3)若點P運動的同時,△ABC以B為位似中心向右放大,且點C向右運動的速度為每秒2個單位,△ABC放大的同時高AD也隨之放大,當以EP為直徑的圓與動線段AD所在直線相切,求t的值和此時C點的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù).
(1)證明:不論取何值,該函數(shù)圖像與軸總有公共點;
(2)若該函數(shù)的圖像與軸交于點(0,3),求出頂點坐標并畫出該函數(shù)圖像;
(3)在(2)的條件下,觀察圖像,解答下列問題:
①不等式的的解集是 ;
②若一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是 ;
③若一元二次方程在的范圍內(nèi)有實數(shù)根,則的取
值范圍是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】南沙群島是我國固有領土,現(xiàn)在我南海漁民要在南沙某海島附近進行捕魚作業(yè),當漁船航行至B處時,測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題背景:如圖1,在四邊形ABCD中,∠ABC=90°,AB=CB=DB,DB⊥AC.
①直接寫出∠ADC的大;
②求證:AB2+BC2=AC2.
遷移應用:如圖2,在四邊形ABCD中,∠BAD=60°,AB=BC=CD=DA=2,在∠ABC內(nèi)作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE、CF.
①求證:△CEF是等邊三角形;
②若∠BAF=45°,求BF的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知一條直線過點(0,4),且與拋物線y=x2交于A,B兩點,其中點A的橫坐標是-2.
(1)求這條直線的解析式及點B的坐標;
(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,分別以△ABC的邊AB,AC向外作兩個等邊三角形△ABD,△ACE.連接BE、CD交點F,連接AF.
(1)求證:△ACD≌△AEB;
(2)求證:AF+BF+CF=CD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】根據(jù)以下10個乘積,回答問題:
11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;20×20.
(1)將以上各乘積分別寫成“a2﹣b2”(兩數(shù)平方)的形式,將以上10個乘積按照從小到大的順序排列起來;
(2)用含有a,b的式子表示(1)中的一個一般性的結(jié)論(不要求證明);
(3)根據(jù)(2)中的一般性的結(jié)論回答下面問題:某種產(chǎn)品的原料提價,因而廠家決定對產(chǎn)品進行提價,現(xiàn)有兩種方案方案:第一次提價p%,第二次提價q%;方案2:第一、二次提價均為%,其中p≠q,比較哪種方案提價最多?
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場購進甲、乙兩種商品,甲種商品共用了2000元,乙種商品共用了2400元已知乙種商品每件進價比甲種商品每件進價多8元,且購進的甲、乙兩種商品件數(shù)相同.
求甲、乙兩種商品的每件進價;
該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為60元,乙種商品的銷售單價為88元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的七折銷售;乙種商品銷售單價保持不變要使兩種商品全部售完后共獲利不少于2460元,問甲種商品按原銷售單價至少銷售多少件?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,,AC為直徑,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)若AC=9,CE=3,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com