科目: 來源: 題型:
【題目】正方形ABCD的邊長AB=2,E為AB的中點(diǎn),F為BC的中點(diǎn),AF分別與DE、BD相交于點(diǎn)M,N,則MN的長為( 。
A. B. ﹣1 C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,∠ADC的平分線與AB交于E,點(diǎn)F在DE的延長線上,∠BFE=90°,連接AF、CF,CF與AB交于G.有以下結(jié)論:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知ABCD的四個內(nèi)角的平分線分別相交于點(diǎn)E、F、G、H,連接AC.若EF=2,FG=GC=5,則AC的長是( 。
A. 12 B. 13 C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,一次函數(shù)y=x+4與x軸、y軸分別交于A,B兩點(diǎn).P是x軸上的動點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為n.
(1)當(dāng)△BPO∽△ABO時,求點(diǎn)P的坐標(biāo);
(2)如圖2,過點(diǎn)P的直線y=2x+b與直線AB相交于C,求當(dāng)△PAC的面積為20時,點(diǎn)P的坐標(biāo);
(3)如圖3,直接寫出當(dāng)以A,B,P為頂點(diǎn)的三角形為等腰三角形時,點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)觀察發(fā)現(xiàn):如圖1,在Rt△ABC中,∠B=90°,點(diǎn)D在邊AB上,過D作DE∥BC交AC于E,AB=5,AD=3,AE=4.填空:
①△ABC與△ADE是否相似?(直接回答) ;
②AC= ;DE= .
(2)拓展探究:將△ADE繞頂點(diǎn)A旋轉(zhuǎn)到圖2所示的位置,猜想△ADB與△AEC是否相似?若不相似,說明理由;若相似,請證明.
(3)遷移應(yīng)用:將△ADE繞頂點(diǎn)A旋轉(zhuǎn)到點(diǎn)B、D、E在同一條直線上時,直接寫出線段BE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)D是邊AB上的動點(diǎn),過點(diǎn)D作DE∥BC交AC于E,過E作EF∥AB交BC于F,連結(jié)DF.
(1)若點(diǎn)D是AB的中點(diǎn),證明:四邊形DFEA是平行四邊形;
(2)若AC=8,BC=6,直接寫出當(dāng)△DEF為直角三角形時AD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的方程x2+mx+m﹣3=0.
(1)若該方程的一個根為2,求m的值及方程的另一個根;
(2)求證:不論m取何實(shí)數(shù),該方程都有兩個不相等的實(shí)數(shù)根.
查看答案和解析>>
科目: 來源: 題型:
【題目】在RT△ABC中,BC=3,AC=4,點(diǎn)D,E是線段AB,AC上的兩個動點(diǎn)(不與A,B,C重合)沿DE翻折△ADE使得點(diǎn)A的對應(yīng)點(diǎn)F恰好落在直線BC上,當(dāng)DF與RT△ABC的一條邊垂直的時候,線段AD的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象相交于A、B兩點(diǎn),過點(diǎn)A作AD⊥x軸于點(diǎn)D,AO=5,OD=AD,B點(diǎn)的坐標(biāo)為(﹣6,n).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)P是y軸上一點(diǎn),且△AOP是等腰三角形,請直接寫出所有符合條件的P點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com