科目: 來源: 題型:
【題目】對于實數m、n,定義一種運算“※”為:m※n=mn+n.
(1)求2※5與2※(﹣5)的值;
(2)如果關于x的方程x※(a※x)=﹣有兩個相等的實數根,求實數a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,點E為AB的中點.
(1)求證:△ADC∽△ACB.
(2)若AD=2,AB=3,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線y=kx(k≠0)經過點(12,﹣5),將直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相交(點O為坐標原點),則m的取值范圍為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在兩個全等的等腰直角三角形ABC和EDC中,∠ACB=∠ECD=90°,點A與點E重合,點D與點B重合.現△ABC不動,把△EDC繞點C按順時針方向旋轉,旋轉角為α(0°<α<90°).
(1)如圖②,AB與CE交于點F,ED與AB,BC分別交于點M,H.求證:CF=CH;
(2)如圖③,當α=45°時,試判斷四邊形ACDM的形狀,并說明理由;
(3)如圖②,在△EDC繞點C旋轉的過程中,連結BD,當旋轉角α的度數為多少時,△BDH是等腰三角形?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點按逆時針方向旋轉α角(0°<α<90°)得到△DEC,設CD交AB于F,連接AD,△ADF是等腰三角形旋轉角α度數為( 。
A. 20° B. 40° C. 20°或40° D. 60°
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓O通過五邊形OABCD的四個頂點.若弧ABD=150°,∠A=65°,∠D=60°,則弧BC的度數為何?( )
A. 25 B. 40 C. 50 D. 55
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線y=﹣x2﹣x+2與x軸交于點A,B兩點,交y軸于C點,拋物線的對稱軸與x軸交于H點,分別以OC、OA為邊作矩形AECO.
(1)求直線AC的解析式;
(2)如圖2,P為直線AC上方拋物線上的任意一點,在對稱軸上有一動點M,當四邊形AOCP面積最大時,求|PM﹣OM|的最大值.
(3)如圖3,將△AOC沿直線AC翻折得△ACD,再將△ACD沿著直線AC平移得△A'C′D'.使得點A′、C'在直線AC上,是否存在這樣的點D′,使得△A′ED′為直角三角形?若存在,請求出點D′的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ABC=90°,AB=BC.點D是線段AC上一點,連接BD.過點C作CE⊥BD于點E.點F是AB垂直平分線上一點,連接BF、EF.
(1)若AD=4,tan∠BCE=,求AB的長;
(2)當點F在AC邊上時,求證:∠FEC=45°.
查看答案和解析>>
科目: 來源: 題型:
【題目】某文具店購進A,B兩種鋼筆,若購進A種鋼筆2支,B種鋼筆3支,共需90元;購進A種鋼筆3支,B種鋼筆5支,共需145元.
(1)求該文具店購進A、B兩種鋼筆每支各多少元?
(2)經統(tǒng)計,B種鋼筆售價為30元時,每月可賣64支;每漲價3元,每月將少賣12支,求該文具店B種鋼筆銷售單價定為多少元時,每月獲利最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com