科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于兩點,與軸交于點,且.
(1)求拋物線的解析式;
(2)已知點,點為線段上一動點,延長交拋物線于點,連結(jié).
①當四邊形面積為9,求點的坐標;
②設,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點。
(1)寫出點O到△ABC的三個頂點A、B、C的距離的大小關系并說明理由;
(2)如果點M、N分別在線段AB、AC上移動,在移動中保持AN=BM,請判斷△OMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖.PA和PB分別與⊙O相切于A,B兩點,作直徑AC,并延長交PB于點D.連結(jié)OP,CB.
(1)求證:OP∥CB;
(2)若PA=12,DB:DC=2:1,求⊙O的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】某人從A城出發(fā),前往距離A城30千米的B城.現(xiàn)在有三種方案供他選擇:
①騎自行車,其速度為15千米/時;
②蹬三輪車,其速度為10千米/時;
③騎摩托車,其速度為40千米/時.
(1)選擇哪種方式能使他從A城到達B城的時間不超過2小時?請說明理由;
(2)設此人在行進途中離B城的距離為s(千米),行進時間為t(時),就(1)所選定的方案,試寫出s與t之間的函數(shù)關系式(注明自變量t的取值范圍),并在如圖所示的平面直角坐標系中畫出函數(shù)的圖象.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=,E是AD邊上的一點(點E與點A和點D不重合),BE的垂直平分線交AB于點M,交DC于點N.
(1)證明:MN = BE.
(2)設AE=,四邊形ADNM的面積為S,寫出S關于的函數(shù)關系式.
(3)當AE為何值時,四邊形ADNM的面積最大?最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,燈塔A周圍1000米水域內(nèi)有礁石,一艦艇由西向東航行,在O處測得燈塔A在北偏東74°方向線上,這時O、A相距4200米,如果不改變航向,此艦艇是否有觸礁的危險?(指定數(shù)學課使用科學計算器的地區(qū)的考生須使用計算器計算.以下數(shù)據(jù)供計算器未進入考場的地區(qū)的考生選用:cos74°=0.2756,sin74°=0.9613,cot74°=0.2867,tan74°=3.487)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與軸交于點A(2,0),交軸于點B(0,),直線過點A與y軸交于點C,與拋物線的另一個交點為D,作DE⊥y軸于點E.設點P是直線AD上方的拋物線上一動點(不與點A、D重合),過點P作y軸的平行線,交直線AD于點M,作PN⊥AD于點N.
⑴填空:= ,= ,= ;
⑵探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在,請求出點P的坐標;若不存在,請說明理由;
⑶設△PMN的周長為,點P的橫坐標為x,求與x的函數(shù)關系式,并求出的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在圓中,、是圓的半徑,點在劣弧上,,,,連接.
(1)如圖1,試說明:平分;
(2)如圖2,點在弦的延長線上,連接,如果是直角三角形,求的長;
(3)如圖3,點在弦上,與點不重合,連接與弦交于點,設點與點的距離為,的面積為,求與的函數(shù)關系式,并寫出自變量的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的2倍,則這個矩形是給定矩形的“加倍”矩形.如圖,矩形是矩形的“加倍”矩形.
解決問題:
(1)當矩形的長和寬分別為3,2時,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的長與寬,若不存在,請說明理由.
(2)邊長為的正方形存在“加倍”正方形嗎?請做出判斷,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com