科目: 來源: 題型:
【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應點是G,過點B作BE⊥CG,垂足為E,且在AD上,BE交PC于點F,那么下列選項正確的是( )
①BP=BF;②如圖1,若點E是AD的中點,那么△AEB≌△DEC;③當AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當BP=9時,BEEF=108.
A.①②③④B.①②④⑤C.①②③⑤D.①②③④⑤
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面材料,并解決問題:
(1)如圖①等邊△ABC內(nèi)有一點P,若點P到頂點A、B、C的距離分別為3,4,5,求∠APB的度數(shù).
為了解決本題,我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌△ABP,這樣就可以利用旋轉(zhuǎn)變換,將三條線段PA、PB、PC轉(zhuǎn)化到一個三角形中,從而求出∠APB=__________;
(2)基本運用
請你利用第(1)題的解答思想方法,解答下面問題:
已知如圖②,△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2;
(3)能力提升
如圖③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,點O為Rt△ABC內(nèi)一點,連接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣2,0),B(4,0),與y軸交于點C.點D是拋物線上的一個動點,點D的橫坐標為m(1<m<4),連接AC,BC,DB,DC.
(1)求拋物線的解析式.
(2)當△BCD的面積等于△AOC的面積的時,求m的值.
(3)在拋物線的對稱軸上是否存在一點Q,使得△QAC的周長最小,若存在,求出點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D在AB上,以AD為直徑的⊙O與BC相交于點E,與AC相交于點F,AE平分∠BAC.
(1)求證:BC是⊙O的切線.
(2)若∠EAB=30°,OD=3,求圖中陰影部分的面積.
(3)若AD=5,AE=4,求AF.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0)
(1)求證:無論m為任何非0實數(shù),此方程總有兩個實數(shù)根.
(2)若拋物線y=mx2+(1﹣5m)x﹣5(m≠0)與x軸交于A(x1,0)、B(x2,0)兩點,且|x1﹣x2|=6,求m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(點A在點B的左側(cè)),與x軸負半軸交于點C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點A的坐標為 ,點B的坐標為 ;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“衍生三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“衍生直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售一種文具,進價為5元/件.售價為6元/件時,當天的銷售量為100件.在銷售過程中發(fā)現(xiàn):售價每上漲0.5元,當天的銷售量就減少5件.設當天銷售單價統(tǒng)一為元/件(,且是按0.5元的倍數(shù)上漲),當天銷售利潤為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)要使當天銷售利潤不低于240元,求當天銷售單價所在的范圍;
(3)若每件文具的利潤不超過,要想當天獲得利潤最大,每件文具售價為多少元?并求出最大利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A(1,4),B(1,1),C(3,1).
(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com