分析 依題意,利用余弦定理可求得|AC|=$\sqrt{3}$,繼而可得∠ACB=90°,|AB|cos∠CAB=|AC|,利用平面向量數(shù)量積的定義即可求得$\overrightarrow{AB}$•$\overrightarrow{AC}$的值.
解答 解:在三角形ADC中,∠ADC=120°,AD=DC=1,
由余弦定理得:|AC|2=|AD|2+|CD|2-2|AD||CD|cos120°=1+1-2×(-$\frac{1}{2}$)=3,
故|AC|=$\sqrt{3}$,
又∠DAC=∠DCA=30°,∠BCD=120°,
所以,∠ACB=90°,即△ACB為直角三角形,
所以,|AB|cos∠CAB=|AC|,
所以$\overrightarrow{AB}$•$\overrightarrow{AC}$=|AB||AC|cos∠CAB=|AC|(|AB|cos∠CAB)=|AC|•|AC|=$\sqrt{3}$•$\sqrt{3}$=3.
故答案為:3.
點(diǎn)評 本題考查平面向量數(shù)量積的運(yùn)算,考查余弦定理的應(yīng)用與平面向量數(shù)量積的定義,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<c<b | B. | a<b<c | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{9}$ | B. | $\frac{5π}{18}$ | C. | $\frac{7π}{18}$ | D. | $\frac{11π}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 4 | 6 | 8 | 10 | 12 |
y | 1 | 2 | 3 | 5 | 6 |
A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com