分析 (1)以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能證明EF∥B1D1.
(2)求出平面C1EF的一個法向量和平面ABCD的一個法向量,利用向量法求出二面角C1-EF-A的大。
解答 證明:(1)如圖,以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系.(1分)
則 ${D_1}(0,0,1),{B_1}(1,1,1),E(\frac{1}{2},1,0),F(xiàn)(0,\frac{1}{2},0),{C_1}(0,1,1)$,
$\overrightarrow{EF}=(-\frac{1}{2},-\frac{1}{2},0)$,$\overrightarrow{{B_1}{D_1}}=(-1,-1,0)$(4分
∴$\overrightarrow{{B_1}{D_1}}=2\overrightarrow{EF}$.(5分)
∴EF∥B1D1.(6分)
解:(2)設$\overrightarrow{n_1}=(u,v,w)$是平面C1EF的一個法向量.
$\overrightarrow{F{C}_{1}}$=(0,$\frac{1}{2},1$),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{F{C}_{1}}=\frac{1}{2}v+w=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{EF}=-\frac{1}{2}u-\frac{1}{2}v=0}\end{array}\right.$,取w=1,得$\overrightarrow{n_1}=(2,-2,1)$(9分)
因為DD1⊥平面ABCD,所以平面ABCD的一個法向量是$\overrightarrow{n_2}=(0,0,1)$(10分)
設$\overrightarrow{n_1}$與$\overrightarrow{n_2}$的夾角為α,則$cosα=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|\overrightarrow{n_1}|•|\overrightarrow{n_2}|}}=\frac{1}{3}$…(11分)
結(jié)合圖形,判別得二面角C1-EF-A是鈍角,
∴二面角C1-EF-A的大小為$π-arccos\frac{1}{3}$…(12分)
點評 本題考查線線平行的證明,考查二面角的大小的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}$+1 | B. | $\sqrt{13}$-1 | C. | 2$\sqrt{3}$+1 | D. | 2$\sqrt{3}$-1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com