12.已知-$\frac{π}{2}$<θ<0,且sinθ+cosθ=$\frac{1}{5}$.
(1)求sinθ-cosθ的值;
(2)求$\frac{2-sinθ-cosθ}{tanθ+\frac{1}{tanθ}}$的值.

分析 根據(jù)同角三角函數(shù)關(guān)系式求出sinθ,cosθ后代入求值即可.

解答 解:(1)∵-$\frac{π}{2}$<θ<0,sinθ+cosθ=$\frac{1}{5}$,又 sinθ2+cosθ2=1,
解得:sinθ=-$\frac{3}{5}$,cosθ=$\frac{4}{5}$,
那么:sinθ-cosθ═-$\frac{3}{5}$-$\frac{4}{5}$=-$\frac{7}{5}$;
(2)由(1)可知:sinθ=-$\frac{3}{5}$,cosθ=$\frac{4}{5}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$-\frac{3}{4}$,
∴$\frac{2-sinθ-cosθ}{tanθ+\frac{1}{tanθ}}$=$\frac{2+\frac{3}{5}-\frac{4}{5}}{-\frac{3}{4}-\frac{4}{3}}$=-$\frac{108}{125}$.

點(diǎn)評 本題主要考察了同角三角函數(shù)關(guān)系式的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)( A≠0,ω>0,$-\frac{π}{2}<φ<\frac{π}{2}$)在$x=\frac{2π}{3}$時(shí)取得最大值,且它的最小正周期為π,則( 。
A.f(x)的圖象過點(diǎn)(0,$\frac{1}{2}$)B.f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上是減函數(shù)
C.f(x)的一個(gè)對稱中心是$({\frac{5π}{12},0})$D.f(x)的圖象的一條對稱軸是x=$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.回文數(shù)是指從左到右讀與從右到左讀都一樣的正整數(shù),如22,121,3443,94249等.顯然2位回文數(shù)有9個(gè):11,22,33,…,99.3位回文數(shù)有90個(gè):101,111,121,…,191,202,…,999.則2n+1(n∈N *)位回文數(shù)的個(gè)數(shù)為( 。
A.9×10 n-1個(gè)B.9×10 n個(gè)C.9×10 n+1個(gè)D.9×10 n+2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.點(diǎn)P從(1,0)點(diǎn)出發(fā),沿單位圓x2+y2=1逆時(shí)針方向運(yùn)動$\frac{π}{3}$弧長到達(dá)Q點(diǎn),則Q點(diǎn)坐標(biāo)為(  )
A.$(\frac{1}{2},\frac{{\sqrt{3}}}{2})$B.$(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$C.$(-\frac{1}{2},-\frac{{\sqrt{3}}}{2})$D.$(-\frac{{\sqrt{3}}}{2},\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)已知函數(shù)f(x)的定義域?yàn)椋?,1),求f(x2)的定義域;
(2)已知函數(shù)f(2x+1)的定義域?yàn)椋?,1),求f(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.二次不等式ax2+bx+c<0的解集為{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$},則關(guān)于x的不等式cx2-bx+a>0的解集為(-3,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.圓柱的底面半徑為r,其全面積是側(cè)面積的$\frac{3}{2}$倍.O是圓柱中軸線的中點(diǎn),若在圓柱內(nèi)任取一點(diǎn)P,則使|PO|≤r的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知拋物線y2=2px(p>0)的焦點(diǎn)是雙曲線$\frac{x^2}{5+p}$-$\frac{y^2}{7+p}$=1的一個(gè)焦點(diǎn),則p的值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.下列語句的否定形式是什么?
①a>0;②a=0且b=2;③我們都是中國人;④我們都不是中國人;⑤我們至多一個(gè)是中國人;⑥我們至少5個(gè)是中國人;⑦我們班任意一個(gè)是中國人.

查看答案和解析>>

同步練習(xí)冊答案