4.圓柱的底面半徑為r,其全面積是側(cè)面積的$\frac{3}{2}$倍.O是圓柱中軸線的中點(diǎn),若在圓柱內(nèi)任取一點(diǎn)P,則使|PO|≤r的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

分析 求出圓柱的高是底面半徑的2倍,結(jié)合圖象求出滿足條件的概率即可.

解答 解:如圖示:

設(shè)圓柱的高是h,
則2πr2+2πrh=$\frac{3}{2}$•2πrh,
解得:h=2r,
若|PO|≤r,P在以O(shè)為圓心,以r為半徑的圓內(nèi),
∴使|PO|≤r的概率是:p=$\frac{\frac{4}{3}{πr}^{3}}{2{πr}^{3}}$=$\frac{2}{3}$,
故選:C.

點(diǎn)評 本題考查了幾何概型問題,考查圓柱、圓的有關(guān)公式,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題P:存在${x_0}∈R,x_0^2+2{x_0}+2≥0$,則?p為( 。
A.存在${x_0}∈R,x_0^2+2{x_0}+2<0$B.存在${x_0}∉R,x_0^2+2{x_0}+2<0$
C.任意x∈R,x2+2x+2<0D.任意x∉R,x2+2x+2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)直線$l:x=-\frac{a^2}{c}$與雙曲線$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的兩條漸近線交于A,B兩點(diǎn),左焦點(diǎn)F(-c,0)在以AB為直徑的圓內(nèi),則該雙曲線的離心率的取值范圍為( 。
A.$(0,\sqrt{2})$B.$(1,\sqrt{2})$C.$(\frac{{\sqrt{2}}}{2},1)$D.$(\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知-$\frac{π}{2}$<θ<0,且sinθ+cosθ=$\frac{1}{5}$.
(1)求sinθ-cosθ的值;
(2)求$\frac{2-sinθ-cosθ}{tanθ+\frac{1}{tanθ}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,已知點(diǎn)P的直角坐標(biāo)為(1,-5),點(diǎn)M的極坐標(biāo)為(8,$\frac{π}{2}$),若直線l過點(diǎn)P,且傾斜角為$\frac{π}{3}$,圓C以M為圓心、8為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(2)若直線l和圓C相交于點(diǎn)A、B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)當(dāng)a>0時,討論f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)+2alnx,且g(x)有兩個極值點(diǎn)為x1,x2,其中x1∈(0,e],求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,A,B,C是三角形的三個內(nèi)角,a,b,c是三個內(nèi)角對應(yīng)的三邊,已知b2+c2-a2-$\sqrt{2}$bc=0.
(1)求角A的大;
(2)若sin2B+sin2C=2sin2A,且a=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在小于100的正整數(shù)中共有多少個數(shù)被7除余2,這些數(shù)的和是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,△ABC內(nèi)接于⊙O,弦AE交BC于D,已知AD2=BD•DC,∠ADC=60°,OD=1,OE⊥BC.
(1)求∠ODG;
 (2)求△ABC中BC邊上的高.

查看答案和解析>>

同步練習(xí)冊答案