3.回文數(shù)是指從左到右讀與從右到左讀都一樣的正整數(shù),如22,121,3443,94249等.顯然2位回文數(shù)有9個:11,22,33,…,99.3位回文數(shù)有90個:101,111,121,…,191,202,…,999.則2n+1(n∈N *)位回文數(shù)的個數(shù)為( 。
A.9×10 n-1B.9×10 nC.9×10 n+1D.9×10 n+2

分析 利用回文數(shù)的定義,結(jié)合分步計數(shù)原理即可計算2n+1(n∈N+)位回文數(shù)的個數(shù).

解答 解:第一步,選左邊第一個數(shù)字,有9種選法;
第二步,分別選左邊第2、3、4、…、n、n+1個數(shù)字,共有10×10×10×…×10=10n種選法,
故2n+1(n∈N+)位回文數(shù)有9×10n
故選:B.

點評 本題主要考查了分步計數(shù)原理的運用,新定義數(shù)字問題的理解和運用,歸納推理的運用,屬基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(1)設(shè)x>0,y>0,若$\sqrt{2}$是2x與4y的等比中項,則x2+2y2的最小值為$\frac{1}{3}$.
(2)m,n>0,m+n=1,求$\frac{{m}^{2}}{m+2}$+$\frac{{n}^{2}}{n+1}$的最小值$\frac{1}{4}$.
(3)設(shè)a+b=2,b>0,則$\frac{1}{2|a|}+\frac{|a|}$的最小值$\frac{3}{4}$.
(4)根據(jù)以上小題的解答,總結(jié)說明含條件等式的求最值問題的解決策略(寫出兩個)①化為二次函數(shù)問題來解決
②利用基本不等式的性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題P:存在${x_0}∈R,x_0^2+2{x_0}+2≥0$,則?p為(  )
A.存在${x_0}∈R,x_0^2+2{x_0}+2<0$B.存在${x_0}∉R,x_0^2+2{x_0}+2<0$
C.任意x∈R,x2+2x+2<0D.任意x∉R,x2+2x+2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=x2+bx+c(b、c∈R)在區(qū)間(0,1)上有兩個零點,則(1+b)c+c2的取值范圍是(0,$\frac{1}{16}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,從一架飛機上觀察前下方河流兩岸P、Q兩點的俯角分別為75°、45°,已知河的寬度|PQ|=20m,則此時飛機的飛行高度為$10(\sqrt{3}+1)$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)y=f(x)在點(2,f(2))處的切線方程為y=4x-1,則 f(2)+f′(2)=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)直線$l:x=-\frac{a^2}{c}$與雙曲線$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$的兩條漸近線交于A,B兩點,左焦點F(-c,0)在以AB為直徑的圓內(nèi),則該雙曲線的離心率的取值范圍為(  )
A.$(0,\sqrt{2})$B.$(1,\sqrt{2})$C.$(\frac{{\sqrt{2}}}{2},1)$D.$(\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知-$\frac{π}{2}$<θ<0,且sinθ+cosθ=$\frac{1}{5}$.
(1)求sinθ-cosθ的值;
(2)求$\frac{2-sinθ-cosθ}{tanθ+\frac{1}{tanθ}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在小于100的正整數(shù)中共有多少個數(shù)被7除余2,這些數(shù)的和是多少?

查看答案和解析>>

同步練習(xí)冊答案