7.已知M1={第一象限角},M2={銳角}.M3={0°~90°的角},M4={小于90°的角},則( 。
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M2⊆M3且M2⊆M4

分析 分別寫出第一象限角、銳角、0°~90°的角和小于90°的角的集合,即可判斷題目中的選項(xiàng)是否正確.

解答 解:第一象限角是{α|k•360°<α<90°+k•360°,k∈Z},
銳角是{β|0°<α<90°},
0°~90°的角是{γ|0°≤γ<90°},
小于90°的角是{θ|θ<90°},
所以M2⊆M1,且M2⊆M3,且M2⊆M4
故選:D.

點(diǎn)評(píng) 本題考查了象限角與任意角的概念和應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等比數(shù)列{an}中,a2=1,a4=16,則公比為4或-4..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x>0時(shí)f′(x)>1,f($\frac{π}{6}$)=$\frac{1}{2}$,且f(x)-f(-x)=2sinx,則不等式2f(x-$\frac{π}{3}$)≤sinx-$\sqrt{3}$cosx的解集為[$\frac{π}{6}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知直角梯形ACEF與等腰梯形ABCD所在的平面互相垂直,EF∥AC,EF═$\frac{1}{2}$AC,EC⊥AC,AD=DC=CB=CE=$\frac{1}{2}$AB=1.
(Ⅰ)證明:BC⊥AE;
(Ⅱ)求二面角D-BE-F的余弦值;
(Ⅲ)判斷直線DF與平面BCE的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知an=2n-1,n∈N*,將數(shù)列{an}的項(xiàng)依次按如圖的規(guī)律“蛇形排列”成一個(gè)金字塔狀的三角形數(shù)陣,其中第m行有2m-1個(gè)項(xiàng),記第m行從左到右的第k個(gè)數(shù)為bm,k(1≤k≤2m-1,m,k∈N*),如b3,4=15,b4,2=29,則bm,k=$\left\{\begin{array}{l}{2{m}^{2}-4m+k+1,m為奇數(shù)}\\{2{m}^{2}-2k+1,m為偶數(shù)}\end{array}\right.$(結(jié)果用m,k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.化簡(jiǎn)$\frac{sin(2π-θ)cos(π+θ)cos(\frac{π}{2}+θ)cos(\frac{11π}{2}-θ)}{cos(π-θ)sin(3π-θ)sin(-π-θ)sin(\frac{9π}{2}+θ)}$的值是(  )
A.-tanθB.tanθC.-cosθD.sinθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線y2-x2=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p=$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)x,y滿足$\left\{\begin{array}{l}2x+y≥4\\ x-y≥1\\ x-2y≤2\end{array}\right.$,則z=x+y的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若$\frac{1}{a}$<$\frac{1}$<0,則下列不等式中不正確的是( 。
A.a+b<abB.$\frac{a}$+$\frac{a}$>2C.ab<b2D.a2<b2

查看答案和解析>>

同步練習(xí)冊(cè)答案