分析 (1)利用等差數(shù)列的通項公式及其前n項和公式即可得出.
(2)利用等比數(shù)列的通項公式及其前n項和公式即可得出.
解答 解:(1)∵等差數(shù)列{an}中,a1=$\frac{3}{2}$,d=-$\frac{1}{2}$,
∴an=a1+(n-1)d=$\frac{3}{2}$-$\frac{1}{2}$n+$\frac{1}{2}$=2-$\frac{n}{2}$.
∵Sn=-15,
∴$\frac{n(\frac{3}{2}+2-\frac{n}{2})}{2}$=-15,
解得n=12或n=-5(舍去).
綜上所述,n=12,an=2-$\frac{n}{2}$.
(2))∵Sn=189,q=2,an=96,
∴$\left\{\begin{array}{l}{\frac{{a}_{1}({2}^{n}-1)}{2-1}=189}\\{{a}_{1}{2}^{n-1}=96}\end{array}\right.$,
解得a1=3,n=6.
點評 本題考查了等差數(shù)列和等比數(shù)列的通項公式及其前n項和公式,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x=0 | B. | x=$\frac{π}{6}$ | C. | x=-$\frac{π}{12}$ | D. | x=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com